सैट सॉल्वर
कंप्यूटर विज्ञान एवं औपचारिक उपायों में, सैट सॉल्वर कंप्यूटर प्रोग्राम है जिसका उद्देश्य बूलियन संतुष्टि समस्या का निवारण करना है। बूलियन डेटा प्रकार वेरिएबल, जैसे (x या y) एवं (x या नहीं y) पर सूत्र इनपुट करने पर, सैट सॉल्वर आउटपुट देता है कि क्या सूत्र संतोषजनक है, जिसका अर्थ है कि x एवं y के संभावित मान हैं जो सूत्र को उचित या असंतोषजनक बनाते हैं, जिसका अर्थ है कि x एवं y के ऐसे कोई मान नहीं हैं। इस विषय में, x सत्य होने पर सूत्र संतोषजनक होता है, इसलिए सॉल्वर को संतोषजनक लौटना चाहिए। 1960 के दशक में सैट के लिए एल्गोरिदम के प्रारम्भ के पश्चात से, आधुनिक सैट सॉल्वर कुशलतापूर्वक कार्य करने के लिए अधिक संख्या में अनुमान एवं प्रोग्राम अनुकूलन को सम्मिलित करते हुए समष्टि सॉफ़्टवेयर में विकसित हो गए हैं।
कुक-लेविन प्रमेय के रूप में जाने जाने वाले परिणाम के अनुसार, बूलियन संतुष्टि सामान्य रूप से एनपी-पूर्ण समस्या है। परिणामस्वरूप, केवल घातीय सबसे त्रुटिपूर्ण स्थिति वाले एल्गोरिदम ही ज्ञात हैं। इसके अतिरिक्त, 2000 के दशक के समय सैट के लिए कुशल एवं स्केलेबल एल्गोरिदम विकसित किए गए, जिन्होंने हजारों वेरिएबल एवं लाखों बाधाओं से जुड़े समस्या उदाहरणों को स्वचालित रूप से निवारण करने की क्षमता में नाटकीय प्रगति में योगदान दिया है।[1]सैट सॉल्वर प्रायः सूत्र को संयोजक सामान्य रूप में परिवर्तित करके प्रारम्भ करते हैं। वे प्रायः डीपीएलएल एल्गोरिदम जैसे कोर एल्गोरिदम पर आधारित होते हैं, किन्तु इसमें कई एक्सटेंशन एवं सुविधाएं सम्मिलित होती हैं। अधिकांश सैट सॉल्वरों में टाइम-आउट सम्मिलित होता है, इसलिए वे उचित समय में समाप्त हो जाएंगे, भले ही वे अज्ञात जैसे आउटपुट के साथ समाधान न मिल सकें। प्रायः, सैट सॉल्वर केवल उत्तर ही नहीं देते हैं, अपितु यदि फॉर्मूला संतोषजनक है तो उदाहरण असाइनमेंट (x, y, आदि के लिए मान) या फॉर्मूला असंतोषजनक होने पर असंतोषजनक खंडों का न्यूनतम सेट सहित अधिक जानकारी प्रदान कर सकते हैं।
आधुनिक सैट सॉल्वरों का सॉफ़्टवेयर सत्यापन, प्रोग्राम विश्लेषण, बाधा संतुष्टि समस्या, कृत्रिम बुद्धिमत्ता, इलेक्ट्रॉनिक डिजाइन स्वचालन स्वचालन एवं संचालन अनुसंधान सहित क्षेत्रों पर महत्वपूर्ण प्रभाव पड़ा है। शक्तिशाली सॉल्वर मुफ़्त एवं ओपन-सोर्स सॉफ़्टवेयर के रूप में सरलता से उपलब्ध हैं एवं कुछ प्रोग्रामिंग भाषाओं में निर्मित होते हैं जैसे कि सैट सॉल्वर को बाधा तर्क प्रोग्रामिंग में बाधाओं के रूप में उजागर करना है।
सिंहावलोकन
डीपीएलएल सॉल्वर
डीपीएलएल सैट सॉल्वर संतोषजनक असाइनमेंट की शोध में परिवर्तनीय असाइनमेंट के (घातीय आकार के) समष्टि को ज्ञात करने के लिए व्यवस्थित बैकट्रैकिंग शोध प्रक्रिया को नियोजित करता है। बुनियादी शोध प्रक्रिया 1960 के दशक की का प्रारम्भ में दो मौलिक पत्रों में प्रस्तावित की गई थी (नीचे संदर्भ देखें) एवं अब इसे सामान्यतः डेविस-पुटनम-लोगमैन-लवलैंड एल्गोरिदम (डीपीएलएल या डीएलएल) के रूप में जाना जाता है।[2][3] व्यावहारिक सैट समाधान के लिए कई आधुनिक दृष्टिकोण डीपीएलएल एल्गोरिथ्म से प्राप्त हुए हैं एवं समान संरचना सम्मिलित करते हैं। प्रायः वे केवल सैट समस्याओं के कुछ वर्गों की दक्षता में सुधार करते हैं जैसे कि औद्योगिक अनुप्रयोगों में दिखाई देने वाले उदाहरण या यादृच्छिक रूप से उत्पन्न उदाहरण है।[4]सैद्धांतिक रूप से, एल्गोरिदम के डीपीएलएल सदस्य के लिए घातांकीय निचली सीमाएं प्रमाणित हो चुकी हैं।
जो एल्गोरिदम डीपीएलएल सदस्य का भाग नहीं हैं, उनमें स्टोकेस्टिक समष्टि शोध (बाधा संतुष्टि) एल्गोरिदम सम्मिलित हैं। उदाहरण वॉकसैट है। स्टोकेस्टिक विधियां संतोषजनक व्याख्या ढूंढने का प्रयास करती हैं किन्तु यह निष्कर्ष नहीं निकाल सकती हैं कि डीपीएलएल जैसे पूर्ण एल्गोरिदम के विपरीत, सैट उदाहरण असंतोषजनक है।[4]
इसके विपरीत, पटुरी, पुडलक, सैक्स एवं ज़ेन द्वारा पीपीएसजेड एल्गोरिदम जैसे यादृच्छिक एल्गोरिदम कुछ अनुमानों के अनुसार यादृच्छिक क्रम में वेरिएबल सेट करते हैं, उदाहरण के लिए सीमा-चौड़ाई रिज़ॉल्यूशन है। यदि अनुमानी को उचित सेटिंग नहीं मिल पाती है, तो वेरिएबल को यादृच्छिक रूप से असाइन किया जाता है। PPSZ एल्गोरिथ्म में 3-सैट के लिए runtime[clarify]होता है। यह 2019 तक इस समस्या के लिए सबसे प्रसिद्ध रनटाइम था, जब हैनसेन, कपलान, ज़मीर एवं ज़्विक ने रनटाइम 3-सैट के लिए संशोधन प्रकाशित किया, उत्तरार्द्ध वर्तमान में k के सभी मानों पर k-सैट के लिए सबसे तीव्र ज्ञात एल्गोरिदम है। कई संतोषजनक असाइनमेंट वाली सेटिंग में स्कोनिंग द्वारा यादृच्छिक एल्गोरिदम की सीमा उत्तम है।[5][6][7]
सीडीसीएल सॉल्वर
आधुनिक सैट सॉल्वर (2000 के दशक में विकसित) दो प्रकारों में आते हैं: संघर्ष-संचालित एवं आगे की ओर देखने वाले। दोनों दृष्टिकोण डीपीएलएल से उत्पन हुए हैं।[4] संघर्ष-संचालित सॉल्वर, जैसे संघर्ष-संचालित क्लॉज लर्निंग (सीडीसीएल), कुशल संघर्ष विश्लेषण, क्लॉज लर्निंग, गैर-कालानुक्रमिक बैकट्रैकिंग साथ ही दो-देखे-शाब्दिक इकाई प्रसार, अनुकूली शाखा एवं यादृच्छिक पुनरारंभ के साथ बुनियादी डीपीएलएल शोध एल्गोरिदम को बढ़ाते हैं। बुनियादी व्यवस्थित शोध के लिए ये अतिरिक्त अनुभवजन्य रूप से इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (EDA) में उत्पन्न होने वाले बड़े सैट उदाहरणों को संभालने के लिए आवश्यक दिखाए गए हैं।[8] सुप्रसिद्ध कार्यान्वयनों में ग्रास्प एल्गोरिथ्म सम्मिलित है[9]।[10] लुक-फॉरवर्ड सॉल्वर्स ने विशेष रूप से कटौती (यूनिट-क्लॉज प्रसार से परे) एवं अनुमानों को सशक्त किया है, एवं वे सामान्यतः कठिन उदाहरणों पर संघर्ष-संचालित सॉल्वरों की अपेक्षा में अधिक सशक्त होते हैं (जबकि संघर्ष-संचालित सॉल्वर बड़े उदाहरणों पर अधिक उत्तम हो सकते हैं जिनके अंदर वास्तव में सरल उदाहरण होता है)।
संघर्ष-संचालित मिनीसैट, जो 2005 सैट प्रतियोगिता में अपेक्षाकृत सफल रहा, में कोड की केवल 600 लाइनें हैं। आधुनिक समानांतर सैट सॉल्वर मैनीसैट है।[11] यह समस्याओं के महत्वपूर्ण वर्गों पर सुपर लीनियर स्पीड-अप प्राप्त कर सकता है। आगे बढ़ने वाले सॉल्वरों का उदाहरण मार्च_डीएल है, जिसने 2007 सैट प्रतियोगिता में पुरस्कार जीता था। गूगल के सीपी-सैट सॉल्वर, या-उपकरण के भाग, ने 2018, 2019, 2020 एवं 2021 में मिनिजिंक बाधा प्रोग्रामिंग प्रतियोगिताओं में स्वर्ण पदक जीते थे।
सैट के कुछ प्रकार के बड़े यादृच्छिक संतोषजनक उदाहरणों को सर्वेक्षण प्रसार (एसपी) द्वारा निवारण किया जा सकता है। विशेष रूप से हार्डवेयर डिज़ाइन एवं हार्डवेयर सत्यापन अनुप्रयोगों में, किसी दिए गए प्रस्ताव सूत्र की संतुष्टि एवं अन्य लॉजिक गुणों को कभी-कभी द्विआधारी निर्णय आरेख (बीडीडी) के रूप में सूत्र के प्रतिनिधित्व के आधार पर सुनिश्चित किया जाता है।
भिन्न-भिन्न सैट सॉल्वर भिन्न-भिन्न उदाहरणों को सरल या कठिन पाएंगे, एवं कुछ असंतोषजनकता प्रमाणित करने में एवं अन्य समाधान शोध में उत्कृष्टता प्राप्त करेंगे। ये सभी बिहेवियर सैट समाधान प्रतियोगिताओं में देखे जा सकते हैं।[12]
समानांतर सैट-समाधान
समानांतर एल्गोरिदम सैट सॉल्वर तीन श्रेणियों पोर्टफोलियो, डिवाइड-एंड-कॉनकर एवं समानांतर समष्टि शोध एल्गोरिदम में हैं। समानांतर पोर्टफोलियो के साथ, कई भिन्न-भिन्न सैट सॉल्वर साथ चलते हैं। उनमें से प्रत्येक सैट उदाहरण की एक प्रति निवारण करता है, जबकि डिवाइड-एंड-कॉनकर एल्गोरिदम प्रोसेसर के मध्य समस्या को विभाजित करता है। समष्टिीय शोध एल्गोरिदम को समानांतर करने के लिए विभिन्न दृष्टिकोण सम्मिलित हैं।
अंतर्राष्ट्रीय सैट सॉल्वर प्रतियोगिता में समानांतर ट्रैक है जो समानांतर सैट समाधान में वर्तमान की प्रगति को दर्शाता है। 2016 में,[13] 2017[14] एवं 2018,[15] बेंचमार्क 24 सेंट्रल प्रोसेसिंग यूनिट के साथ भाग-मेमोरी सिस्टम पर चलाए गए थे, इसलिए वितरित मेमोरी या कई कोर प्रोसेसर के लिए सॉल्वर कम पड़ गए थे।
पोर्टफोलियो
सामान्यतः ऐसा कोई सैट सॉल्वर नहीं है जो सभी सैट समस्याओं पर अन्य सभी सॉल्वरों से उत्तम प्रदर्शन करता हो। एल्गोरिदम उन समस्या उदाहरणों के लिए उचित प्रदर्शन कर सकता है जिनसे अन्य लोग जूझ रहे हैं, किन्तु अन्य उदाहरणों के साथ यह व्यर्थ प्रदर्शन करेगा। इसके अतिरिक्त, सैट उदाहरण को देखते हुए, यह अनुमान लगाने का कोई विश्वसनीय उपाय नहीं है कि कौन सा एल्गोरिदम इस उदाहरण को विशेष रूप से तीव्रता से निवारण करेगा। ये सीमाएँ समानांतर पोर्टफोलियो दृष्टिकोण को प्रेरित करती हैं। पोर्टफोलियो विभिन्न एल्गोरिदम या एल्गोरिदम के विभिन्न कॉन्फ़िगरेशन का सेट है। समानांतर पोर्टफोलियो में सभी सॉल्वर समस्या का निवारण करने के लिए भिन्न-भिन्न प्रोसेसर पर चलते हैं। यदि सॉल्वर समाप्त हो जाता है, तो पोर्टफोलियो सॉल्वर इस सॉल्वर के अनुसार समस्या को संतोषजनक या असंतोषजनक बताता है। अन्य सभी सॉल्वरों को समाप्त कर दिया गया है। विभिन्न प्रकार के सॉल्वरों को सम्मिलित करके पोर्टफोलियो में विविधता लाने से, जिनमें से प्रत्येक समस्या के भिन्न-भिन्न सेट पर उचित प्रदर्शन करता है, सॉल्वर की शक्ति बढ़ जाती है।[16]कई सॉल्वर आंतरिक रूप से रैंडम संख्या पीढ़ी का उपयोग करते हैं। अपने यादृच्छिक सीड में विविधता लाना पोर्टफोलियो में विविधता लाने का सरल उपाय है। अन्य विविधीकरण रणनीतियों में अनुक्रमिक सॉल्वर में कुछ अनुमानों को सक्षम करना, अक्षम करना या विविधता लाना सम्मिलित है।[17]समानांतर पोर्टफोलियो का दोष डुप्लिकेट कार्य की मात्रा है। यदि अनुक्रमिक सॉल्वरों में क्लॉज लर्निंग का उपयोग किया जाता है, तो समानांतर चलने वाले सॉल्वरों के मध्य सीखे गए क्लॉज को भागित करने से डुप्लिकेट कार्य को कम किया जा सकता है एवं प्रदर्शन में वृद्धि हो सकती है। अपितु, केवल सर्वोत्तम सॉल्वरों का पोर्टफोलियो समानांतर में चलाने से भी प्रतिस्पर्धी समानांतर सॉल्वर बन जाता है। ऐसे सॉल्वर का उदाहरण पीपीफ़ोलियो है।[18][19] इसे उस प्रदर्शन के लिए निचली सीमा शोधने के लिए डिज़ाइन किया गया था जो समानांतर सैट सॉल्वर प्रदान करने में सक्षम होना चाहिए। अनुकूलन के अभाव के कारण अधिक मात्रा में डुप्लिकेट कार्य के अतिरिक्त, इसने भाग मेमोरी मशीन पर उचित प्रदर्शन किया है। होर्डेसैट[20] कंप्यूटिंग नोड्स के बड़े समूहों के लिए समानांतर पोर्टफोलियो सॉल्वर है। यह अपने मूल में अनुक्रमिक सॉल्वर के भिन्न-भिन्न कॉन्फ़िगर किए गए उदाहरणों का उपयोग करता है। विशेष रूप से कठिन सैट उदाहरणों के लिए होर्डेसैट रैखिक स्पीडअप उत्पन्न कर सकता है एवं इसलिए रनटाइम को अधिक कम कर सकता है।
वर्तमान के वर्षों में समानांतर पोर्टफोलियो सैट सॉल्वरों ने अंतर्राष्ट्रीय सैट सॉल्वर प्रतियोगिताओं के समानांतर ट्रैक पर अपना प्रतिनिधित्व बना लिया है। ऐसे सॉल्वरों के उल्लेखनीय उदाहरणों में प्लिंगलिंग एवं पेनलेस-एमकॉमस्प्स सम्मिलित हैं।[21]
फूट डालो एवं राज करो
समानांतर पोर्टफोलियो के विपरीत, समानांतर विभाजन एवं जीत प्रसंस्करण तत्वों के मध्य शोध समष्टि को विभाजित करने का प्रयास करता है। अनुक्रमिक डीपीएलएल जैसे फूट डालो एवं जीतो एल्गोरिदम, पनिवारणे से ही शोध समष्टि को विभाजित करने की तकनीक लागू करते हैं, इसलिए समानांतर एल्गोरिदम की ओर उनका विस्तार सीधा है। हालाँकि, विभाजन के पश्चात इकाई प्रसार जैसी तकनीकों के कारण, आंशिक समस्याएं समष्टिता में अधिक भिन्न हो सकती हैं। इस प्रकार डीपीएलएल एल्गोरिदम सामान्यतः शोध समष्टि के प्रत्येक भाग को समान समय में संसाधित नहीं करता है, जिससे चुनौतीपूर्ण लोड संतुलन (कंप्यूटिंग) समस्या उत्पन्न होती है।[16] गैर-कालानुक्रमिक बैकट्रैकिंग के कारण, संघर्ष-संचालित खंड सीखने का समानांतरीकरण अधिक कठिन है। इस पर काबू पाने का उपाय घन-एवं-विजय प्रतिमान है।[22] यह दो वेरिएबलणों में समाधान करने का सुझाव देता है। घन वेरिएबलण में समस्या को हजारों, लाखों तक वर्गों में विभाजित किया जाता है। यह लुक-फॉरवर्ड सॉल्वर द्वारा किया जाता है, जो क्यूब्स नामक आंशिक कॉन्फ़िगरेशन का सेट ढूंढता है। घन को मूल सूत्र के वेरिएबलों के सबसेट के लॉजिक संयोजन के रूप में भी देखा जा सकता है। सूत्र के संयोजन में, प्रत्येक घन नया सूत्र बनाता है। इन सूत्रों को संघर्ष-संचालित समाधानकर्ताओं द्वारा स्वतंत्र रूप से एवं समवर्ती रूप से निवारण किया जा सकता है। चूंकि इन सूत्रों का लॉजिक विच्छेदन मूल सूत्र के लिए लॉजिक तुल्यता है, इसलिए समस्या को संतोषजनक माना जाता है, यदि कोई सूत्र संतोषजनक है। आगे की ओर देखने वाला समाधानकर्ता छोटी किन्तु कठिन समस्याओं के लिए अनुकूल है,[23] इसलिए इसका उपयोग समस्या को धीरे-धीरे कई उप-समस्याओं में विभाजित करने के लिए किया जाता है। ये उप-समस्याएँ सरल हैं किन्तु अपितु अधिक हैं जो संघर्ष-संचालित समाधानकर्ता के लिए आदर्श रूप है। इसके अतिरिक्त आगे की सोच वाले समाधानकर्ता पूरी समस्या पर विचार करते हैं जबकि संघर्ष-प्रेरित समाधानकर्ता अधिक समष्टिीय जानकारी के आधार पर निर्णय लेते हैं। घन वेरिएबलण में तीन अनुमान सम्मिलित हैं। घनों में वेरिएबलों को निर्णय अनुमान के अनुसार चुना जाता है। दिशा अनुमान यह सुनिश्चित करता है कि पनिवारणे किस वेरिएबल असाइनमेंट (उचित या गलत) का पता लगाना है। संतोषजनक समस्या वाले मामलों में, पनिवारणे संतोषजनक शाखा चुनना फायदेमंद होता है। कटऑफ अनुमान यह सुनिश्चित करता है कि कब क्यूब का विस्तार बंद करना है एवं इसके बजाय इसे अनुक्रमिक संघर्ष-संचालित सॉल्वर को अग्रेषित करना है। अधिमानतः क्यूब्स का निवारण करना समान रूप से समष्टि है।[22]
ट्रींजलिंग समानांतर सॉल्वर का उदाहरण है जो क्यूब-एंड-कॉनकर प्रतिमान लागू करता है। 2012 में इसकी का प्रारम्भ के पश्चात से इसे अंतर्राष्ट्रीय सैट सॉल्वर प्रतियोगिता में कई सफलताएँ मिली हैं। बूलियन पायथागॉरियन त्रिगुण समस्या का निवारण करने के लिए क्यूब-एंड-कॉन्कर का उपयोग किया गया था।[24]
समष्टिीय शोध
सैट समाधान के लिए समानांतर समष्टिीय शोध एल्गोरिदम की दिशा में रणनीति विभिन्न प्रसंस्करण इकाइयों पर साथ कई वेरिएबल फ़्लिप की कोशिश करना है।[25] दूसरा, उपर्युक्त पोर्टफोलियो दृष्टिकोण को लागू करना है, हालांकि क्लॉज भाग करना संभव नहीं है क्योंकि समष्टिीय शोध सॉल्वर क्लॉज का उत्पादन नहीं करते हैं। वैकल्पिक रूप से, समष्टिीय स्तर पर उत्पादित कॉन्फ़िगरेशन को भाग करना संभव है। जब कोई समष्टिीय सॉल्वर अपनी शोध को फिर से प्रारम्भ करने का निर्णय लेता है तो इन कॉन्फ़िगरेशन का उपयोग नए प्रारंभिक कॉन्फ़िगरेशन के उत्पादन को निर्देशित करने के लिए किया जा सकता है।[26]
यह भी देखें
- बूलियन संतुष्टि समस्या
- संतुष्टि मॉड्यूलो सिद्धांत
- :श्रेणी:सैट सॉल्वर
- कंप्यूटर-समर्थित प्रमाण
संदर्भ
- ↑ Ohrimenko, Olga; Stuckey, Peter J.; Codish, Michael (2007), "Propagation = Lazy Clause Generation", Principles and Practice of Constraint Programming – CP 2007, Lecture Notes in Computer Science, vol. 4741, pp. 544–558, CiteSeerX 10.1.1.70.5471, doi:10.1007/978-3-540-74970-7_39,
modern SAT solvers can often handle problems with millions of constraints and hundreds of thousands of variables
- ↑ Davis, M.; Putnam, H. (1960). "परिमाणीकरण सिद्धांत के लिए एक कंप्यूटिंग प्रक्रिया". Journal of the ACM. 7 (3): 201. doi:10.1145/321033.321034. S2CID 31888376.
- ↑ Davis, M.; Logemann, G.; Loveland, D. (1962). "प्रमेय सिद्ध करने के लिए एक मशीन प्रोग्राम" (PDF). Communications of the ACM. 5 (7): 394–397. doi:10.1145/368273.368557. hdl:2027/mdp.39015095248095. S2CID 15866917.
- ↑ 4.0 4.1 4.2 Zhang, Lintao; Malik, Sharad (2002), "The Quest for Efficient Boolean Satisfiability Solvers", Computer Aided Verification, Springer Berlin Heidelberg, pp. 17–36, doi:10.1007/3-540-45657-0_2, ISBN 978-3-540-43997-4
- ↑ Schöning, Uwe (Oct 1999). "A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems" (PDF). Proc. 40th Ann. Symp. Foundations of Computer Science. pp. 410–414. doi:10.1109/SFFCS.1999.814612. ISBN 0-7695-0409-4. S2CID 123177576.
- ↑ k-SAT के लिए एक बेहतर घातांक-समय एल्गोरिथ्म, पटुरी, पुडलक, सैक्स, ज़ानी
- ↑ बायस्ड-पीपीएसजेड का उपयोग करते हुए तेज़ के-एसएटी एल्गोरिदम, हैनसेन, कपलान, ज़मीर, ज़्विक
- ↑ Vizel, Y.; Weissenbacher, G.; Malik, S. (2015). "बूलियन संतुष्टि समाधानकर्ता और मॉडल जाँच में उनके अनुप्रयोग". Proceedings of the IEEE. 103 (11): 2021–2035. doi:10.1109/JPROC.2015.2455034. S2CID 10190144.
- ↑ Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; Malik, S. (2001). "Chaff: Engineering an Efficient SAT Solver" (PDF). Proceedings of the 38th conference on Design automation (DAC). p. 530. doi:10.1145/378239.379017. ISBN 1581132972. S2CID 9292941.
- ↑ Marques-Silva, J. P.; Sakallah, K. A. (1999). "GRASP: a search algorithm for propositional satisfiability" (PDF). IEEE Transactions on Computers. 48 (5): 506. doi:10.1109/12.769433. Archived from the original (PDF) on 2016-11-04. Retrieved 2015-08-28.
- ↑ http://www.cril.univ-artois.fr/~jabbour/manysat.htm[bare URL]
- ↑ "अंतर्राष्ट्रीय SAT प्रतियोगिता वेब पेज". Retrieved 2007-11-15.
- ↑ "SAT Competition 2016". baldur.iti.kit.edu. Retrieved 2020-02-13.
- ↑ "SAT Competition 2017". baldur.iti.kit.edu. Retrieved 2020-02-13.
- ↑ "SAT Competition 2018". sat2018.forsyte.tuwien.ac.at. Retrieved 2020-02-13.
- ↑ 16.0 16.1 Balyo, Tomáš; Sinz, Carsten (2018), "Parallel Satisfiability", Handbook of Parallel Constraint Reasoning, Springer International Publishing, pp. 3–29, doi:10.1007/978-3-319-63516-3_1, ISBN 978-3-319-63515-6
- ↑ Biere, Armin. "Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010" (PDF). SAT-RACE 2010.
- ↑ "पीपीफ़ोलियो सॉल्वर". www.cril.univ-artois.fr. Retrieved 2019-12-29.
- ↑ "SAT 2011 Competition: 32 cores track: ranking of solvers". www.cril.univ-artois.fr. Retrieved 2020-02-13.
- ↑ Balyo, Tomáš; Sanders, Peter; Sinz, Carsten (2015), "HordeSat: A Massively Parallel Portfolio SAT Solver", Lecture Notes in Computer Science, Springer International Publishing, pp. 156–172, arXiv:1505.03340, doi:10.1007/978-3-319-24318-4_12, ISBN 978-3-319-24317-7, S2CID 11507540
- ↑ "SAT Competition 2018". sat2018.forsyte.tuwien.ac.at. Retrieved 2020-02-13.
- ↑ 22.0 22.1 Heule, Marijn J. H.; Kullmann, Oliver; Wieringa, Siert; Biere, Armin (2012), "Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads", Hardware and Software: Verification and Testing, Springer Berlin Heidelberg, pp. 50–65, doi:10.1007/978-3-642-34188-5_8, ISBN 978-3-642-34187-8
- ↑ Heule, Marijn J. H.; van Maaren, Hans (2009). "Look-Ahead Based SAT Solvers" (PDF). संतुष्टि की पुस्तिका. IOS Press. pp. 155–184. ISBN 978-1-58603-929-5.
- ↑ Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016), "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer", Theory and Applications of Satisfiability Testing – SAT 2016, Springer International Publishing, pp. 228–245, arXiv:1605.00723, doi:10.1007/978-3-319-40970-2_15, ISBN 978-3-319-40969-6, S2CID 7912943
- ↑ Roli, Andrea (2002), "Criticality and Parallelism in Structured SAT Instances", Principles and Practice of Constraint Programming - CP 2002, Lecture Notes in Computer Science, vol. 2470, Springer Berlin Heidelberg, pp. 714–719, doi:10.1007/3-540-46135-3_51, ISBN 978-3-540-44120-5
- ↑ Arbelaez, Alejandro; Hamadi, Youssef (2011), "Improving Parallel Local Search for SAT", Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 46–60, doi:10.1007/978-3-642-25566-3_4, ISBN 978-3-642-25565-6, S2CID 14735849