क्लोज्ड फॉर्म एक्सप्रेशन

From Vigyanwiki

गणित में, एक बंद-रूप अभिव्यक्ति एक अभिव्यक्ति (गणित) है जो मानक संचालन की एक सीमित संख्या का उपयोग करती है। इसमें कॉन्सटेंट (गणित), चर (गणित), कुछ प्रसिद्ध ऑपरेशन (गणित) (जैसे, + - × ÷), और फ़ंक्शन (गणित) (जैसे, Nth root|nth root, शामिल हो सकते हैं। प्रतिपादक, लघुगणक, त्रिकोणमितीय कार्य, और व्युत्क्रम अतिपरवलयिक कार्य), लेकिन आमतौर पर अनुक्रम, व्युत्पन्न या अभिन्न की कोई सीमा नहीं होती है। संचालन और कार्यों का सेट लेखक और संदर्भ के साथ भिन्न हो सकता है।

उदाहरण: बहुपदों की जड़ें

सम्मिश्र संख्या गुणांक वाले किसी भी द्विघात समीकरण के समाधान को जोड़, घटाव, गुणा, भाग (गणित) और वर्गमूल निष्कर्षण के रूप में बंद रूप में व्यक्त किया जा सकता है, जिनमें से प्रत्येक एक प्रारंभिक कार्य है। उदाहरण के लिए, द्विघात समीकरण

सुगम है क्योंकि इसके समाधान को एक बंद-रूप अभिव्यक्ति के रूप में व्यक्त किया जा सकता है, अर्थात प्राथमिक कार्यों के संदर्भ में:

इसी तरह, क्यूबिक और क्वार्टिक (तीसरे और चौथे डिग्री) समीकरणों के समाधान अंकगणित, वर्गमूल और एनवें रूट का उपयोग करके व्यक्त किए जा सकते हैं|nवें जड़ें। हालांकि, ऐसे बंद-रूप समाधान के बिना क्विंटिक समीकरण हैं, उदाहरण के लिए x5 − x + 1 = 0; यह एबेल-रफिनी प्रमेय है।

बहुपद जड़ों के लिए बंद रूपों के अस्तित्व का अध्ययन प्रारंभिक प्रेरणा है और गणित के गैल्वा सिद्धांत नामक क्षेत्र की मुख्य उपलब्धियों में से एक है।

वैकल्पिक परिभाषाएँ

अतिरिक्त कार्यों को शामिल करने के लिए प्रसिद्ध की परिभाषा को बदलने से समीकरणों के सेट को बंद-रूप समाधान के साथ बदल सकते हैं। कई संचयी वितरण कार्यों को बंद रूप में व्यक्त नहीं किया जा सकता है, जब तक कि कोई विशेष कार्य जैसे कि त्रुटि फ़ंक्शन या गामा समारोह को अच्छी तरह से ज्ञात न हो। यदि सामान्य हाइपरज्यामितीय कार्यों को शामिल किया जाता है, तो क्विंटिक समीकरण को हल करना संभव है, हालांकि समाधान उपयोगी होने के लिए बीजगणितीय रूप से बहुत जटिल है। कई व्यावहारिक कंप्यूटर अनुप्रयोगों के लिए, यह मान लेना पूरी तरह से उचित है कि गामा फ़ंक्शन और अन्य विशेष फ़ंक्शन अच्छी तरह से ज्ञात हैं क्योंकि संख्यात्मक कार्यान्वयन व्यापक रूप से उपलब्ध हैं।

विश्लेषणात्मक अभिव्यक्ति

एक विश्लेषणात्मक अभिव्यक्ति (विश्लेषणात्मक रूप या विश्लेषणात्मक सूत्र में अभिव्यक्ति के रूप में भी जाना जाता है) एक गणितीय अभिव्यक्ति है जो प्रसिद्ध संचालन का उपयोग करके बनाई गई है जो खुद को गणना के लिए आसानी से उधार देती है।[vague][citation needed] क्लोज-फॉर्म एक्सप्रेशन के समान, अनुमत प्रसिद्ध कार्यों का सेट संदर्भ के अनुसार भिन्न हो सकता है लेकिन इसमें हमेशा अंकगणित#अंकगणितीय संचालन (जोड़, घटाव, गुणा और भाग) शामिल होते हैं, एक वास्तविक प्रतिपादक के लिए घातांक (जिसमें का निष्कर्षण शामिल होता है) nth जड़ |nवें मूल), लघुगणक और त्रिकोणमितीय कार्य।

हालांकि, विश्लेषणात्मक अभिव्यक्तियों के रूप में मानी जाने वाली अभिव्यक्तियों की श्रेणी बंद-रूप अभिव्यक्तियों की तुलना में व्यापक होती है। विशेष रूप से, बेसेल कार्य करता है और गामा फ़ंक्शन जैसे विशेष कार्यों की आमतौर पर अनुमति दी जाती है, और अक्सर श्रृंखला (गणित) और निरंतर भिन्न होते हैं। दूसरी ओर, सामान्य रूप से एक अनुक्रम की सीमा और विशेष रूप से अभिन्न, आमतौर पर बाहर रखा गया है।[citation needed] यदि एक विश्लेषणात्मक अभिव्यक्ति में केवल बीजगणितीय संचालन (इसके अलावा, घटाव, गुणा, विभाजन, और एक तर्कसंगत घातांक के लिए घातांक) और तर्कसंगत स्थिरांक शामिल हैं तो इसे विशेष रूप से बीजगणितीय अभिव्यक्ति के रूप में संदर्भित किया जाता है।

भावों के विभिन्न वर्गों की तुलना

बंद रूप अभिव्यक्ति विश्लेषणात्मक अभिव्यक्तियों का एक महत्वपूर्ण उप-वर्ग है, जिसमें एक बाध्यता होती है[citation needed] या प्रसिद्ध कार्यों के अनुप्रयोगों की असीमित संख्या। व्यापक विश्लेषणात्मक अभिव्यक्तियों के विपरीत, बंद-रूप अभिव्यक्ति में श्रृंखला (गणित) # अनंत श्रृंखला या निरंतर अंश शामिल नहीं होते हैं; न तो समाकलन या अनुक्रम की सीमा शामिल है। वास्तव में, स्टोन-वीयरस्ट्रास प्रमेय द्वारा, इकाई अंतराल पर किसी भी निरंतर कार्य को बहुपदों की सीमा के रूप में व्यक्त किया जा सकता है, इसलिए बहुपदों वाले कार्यों के किसी भी वर्ग और सीमा के तहत बंद होने पर सभी निरंतर कार्यों को अनिवार्य रूप से शामिल किया जाएगा।

इसी तरह, एक समीकरण या समीकरणों की प्रणाली को एक बंद-रूप समाधान कहा जाता है, और केवल अगर, कम से कम एक समीकरण को बंद-रूप अभिव्यक्ति के रूप में व्यक्त किया जा सकता है; और कहा जाता है कि इसका एक विश्लेषणात्मक समाधान है यदि और केवल यदि कम से कम एक समाधान को एक विश्लेषणात्मक अभिव्यक्ति के रूप में व्यक्त किया जा सकता है। क्लोज-फॉर्म समाधान की चर्चा में क्लोज-फॉर्म फंक्शन और #क्लोज्ड-फॉर्म नंबर|क्लोज्ड-फॉर्म नंबर के बीच एक सूक्ष्म अंतर है। (Chow 1999) और # बंद फॉर्म नंबर। एक बंद-रूप या विश्लेषणात्मक समाधान को कभी-कभी स्पष्ट समाधान के रूप में संदर्भित किया जाता है।

Arithmetic expressions Polynomial expressions Algebraic expressions Closed-form expressions Analytic expressions Mathematical expressions
Constant Yes Yes Yes Yes Yes Yes
Elementary arithmetic operation Yes Addition, subtraction, and multiplication only Yes Yes Yes Yes
Finite sum Yes Yes Yes Yes Yes Yes
Finite product Yes Yes Yes Yes Yes Yes
Finite continued fraction Yes No Yes Yes Yes Yes
Variable No Yes Yes Yes Yes Yes
Integer exponent No Yes Yes Yes Yes Yes
Integer nth root No No Yes Yes Yes Yes
Rational exponent No No Yes Yes Yes Yes
Integer factorial No No Yes Yes Yes Yes
Irrational exponent No No No Yes Yes Yes
Logarithm No No No Yes Yes Yes
Trigonometric function No No No Yes Yes Yes
Inverse trigonometric function No No No Yes Yes Yes
Hyperbolic function No No No Yes Yes Yes
Inverse hyperbolic function No No No Yes Yes Yes
Root of a polynomial that is not an algebraic solution No No No No Yes Yes
Gamma function and factorial of a non-integer No No No No Yes Yes
Bessel function No No No No Yes Yes
Special function No No No No Yes Yes
Infinite sum (series) (including power series) No No No No Convergent only Yes
Infinite product No No No No Convergent only Yes
Infinite continued fraction No No No No Convergent only Yes
Limit No No No No No Yes
Derivative No No No No No Yes
Integral No No No No No Yes


नॉन-क्लोज्ड-फॉर्म एक्सप्रेशंस से निपटना

बंद रूप के भावों में परिवर्तन

भावाभिव्यक्ति:

बंद रूप में नहीं है क्योंकि योग में प्राथमिक संक्रियाओं की अनंत संख्या होती है। हालाँकि, एक ज्यामितीय श्रृंखला को जोड़कर इस अभिव्यक्ति को बंद रूप में व्यक्त किया जा सकता है:[1]


विभेदक गाल्वा सिद्धांत

एक बंद-रूप अभिव्यक्ति का अभिन्न एक बंद-रूप अभिव्यक्ति के रूप में अभिव्यक्त हो भी सकता है और नहीं भी। बीजगणितीय गैलोज सिद्धांत के अनुरूप इस अध्ययन को डिफरेंशियल गैलोज सिद्धांत के रूप में जाना जाता है।

डिफरेंशियल गैल्वा सिद्धांत का मूल प्रमेय 1830 और 1840 के दशक में जोसेफ लिउविल के कारण है और इसलिए लिउविल के प्रमेय (अंतर बीजगणित) के रूप में जाना जाता है। लिउविल का प्रमेय।

एक प्राथमिक कार्य का एक मानक उदाहरण जिसका प्रतिपक्षी एक बंद-रूप अभिव्यक्ति नहीं है:

जिसका एक प्रतिपक्षी (गुणक स्थिरांक तक) त्रुटि कार्य है:


गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन

बंद-रूप या विश्लेषणात्मक समाधानों के लिए बहुत जटिल समीकरणों या प्रणालियों का अक्सर गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन द्वारा विश्लेषण किया जा सकता है।

बंद-रूप संख्या

सम्मिश्र संख्याओं के तीन उपक्षेत्र C एक बंद-रूप संख्या की धारणा को एन्कोडिंग के रूप में सुझाया गया है; व्यापकता के बढ़ते क्रम में, ये लिउविलियन संख्याएँ हैं (तर्कसंगत सन्निकटन के अर्थ में लिउविल संख्याओं के साथ भ्रमित नहीं होना चाहिए), ईएल संख्याएँ और प्राथमिक संख्याएँ। लिउविलियन नंबर, निरूपित Lका सबसे छोटा बीजगणितीय रूप से बंद उपक्षेत्र बनाता है C घातांक और लघुगणक के तहत बंद (औपचारिक रूप से, ऐसे सभी उपक्षेत्रों का प्रतिच्छेदन)—अर्थात, ऐसी संख्याएँ जिनमें स्पष्ट घातांक और लघुगणक शामिल हैं, लेकिन स्पष्ट और अंतर्निहित बहुपदों (बहुपदों की जड़ें) की अनुमति देते हैं; यह में परिभाषित किया गया है (Ritt 1948, p. 60). L मूल रूप से प्राथमिक संख्या के रूप में संदर्भित किया गया था, लेकिन इस शब्द का उपयोग अब अधिक व्यापक रूप से बीजगणितीय संचालन, घातांक और लघुगणक के संदर्भ में स्पष्ट रूप से या स्पष्ट रूप से परिभाषित संख्याओं को संदर्भित करने के लिए किया जाता है। में प्रस्तावित एक संकीर्ण परिभाषा (Chow 1999, pp. 441–442), निरूपित E, और EL संख्या के रूप में संदर्भित, का सबसे छोटा उपक्षेत्र है C घातांक और लघुगणक के तहत बंद - इसे बीजगणितीय रूप से बंद करने की आवश्यकता नहीं है, और स्पष्ट बीजगणितीय, घातीय और लघुगणक संचालन के अनुरूप है। ईएल घातीय-लघुगणक और प्राथमिक के लिए एक संक्षिप्त नाम के रूप में दोनों के लिए खड़ा है।

क्या कोई संख्या एक बंद-रूप संख्या है, इससे संबंधित है कि कोई संख्या पारलौकिक संख्या है या नहीं। औपचारिक रूप से, लिउविलियन संख्याओं और प्राथमिक संख्याओं में बीजगणितीय संख्याएँ होती हैं, और उनमें कुछ लेकिन सभी पारलौकिक संख्याएँ शामिल नहीं होती हैं। इसके विपरीत, EL संख्याओं में सभी बीजगणितीय संख्याएँ नहीं होती हैं, लेकिन कुछ पारलौकिक संख्याएँ शामिल होती हैं। पारलौकिक संख्या सिद्धांत के माध्यम से क्लोज-फॉर्म नंबरों का अध्ययन किया जा सकता है, जिसमें एक प्रमुख परिणाम गेलफॉन्ड-श्नाइडर प्रमेय है, और एक प्रमुख खुला प्रश्न शैनुअल का अनुमान है।

संख्यात्मक संगणना

संख्यात्मक संगणनाओं के प्रयोजनों के लिए, बंद रूप में होना सामान्य रूप से आवश्यक नहीं है, क्योंकि कई सीमाएँ और अभिन्न कुशलता से गणना की जा सकती हैं।

संख्यात्मक रूपों से रूपांतरण

ऐसा सॉफ़्टवेयर है जो RIES सहित संख्यात्मक मानों के लिए बंद-फ़ॉर्म व्यंजकों को खोजने का प्रयास करता है,[2] identify मेपल (सॉफ्टवेयर) में[3] और सिम्पी,[4] प्लॉफ़ी का इन्वर्टर,[5] और उलटा प्रतीकात्मक कैलक्यूलेटर[6]


यह भी देखें


संदर्भ

  1. Holton, Glyn. "संख्यात्मक समाधान, बंद-रूप समाधान". Archived from the original on 4 February 2012. Retrieved 31 December 2012.
  2. Munafo, Robert. "RIES - उनके हल दिए हुए, बीजगणितीय समीकरण ज्ञात कीजिए". Retrieved 30 April 2012.
  3. "पहचानना". Maple Online Help. Maplesoft. Retrieved 30 April 2012.
  4. "संख्या पहचान". SymPy documentation. Archived from the original on 2018-07-06. Retrieved 2016-12-01.
  5. "प्लॉफ़ी का इन्वर्टर". Archived from the original on 19 April 2012. Retrieved 30 April 2012.
  6. "उलटा प्रतीकात्मक कैलक्यूलेटर". Archived from the original on 29 March 2012. Retrieved 30 April 2012.


अग्रिम पठन


इस पेज में लापता आंतरिक लिंक की सूची

  • अनुक्रम की सीमा
  • परिमित सेट
  • निरंतर (गणित)
  • त्रिकोणमितीय फलन
  • अंक शास्त्र
  • उलटा अतिशयोक्तिपूर्ण कार्य
  • यौगिक
  • लोगारित्म
  • समारोह (गणित)
  • योग
  • प्राथमिक समारोह
  • गुणांकों
  • जटिल संख्या
  • प्रभाग (गणित)
  • पंचांग समीकरण
  • गाल्वा सिद्धांत
  • त्रुटि समारोह
  • संचयी वितरण फलन
  • हाइपरज्यामितीय समारोह
  • निरंतर अंश
  • बीजगणतीय अभिव्यक्ति
  • समीकरण हल करना
  • जियोमीट्रिक श्रंखला
  • विभेदक गैलोज़ सिद्धांत
  • गणित का मॉडल

बाहरी संबंध