संबंध (गणित)
गणित में, समुच्चय पर दो दिए गए समुच्चय अवयव के बीच संबंध हो भी सकता है और नहीं भी। उदाहरण के लिए, "इससे कम है" प्राकृतिक संख्याओं के समुच्चय पर एक संबंध है,यह धारण करता है उदा। 1 और 3 के बीच (1<3 के रूप में दर्शाता है), और इसी तरह 3 और 4 के बीच (3<4 के रूप में चिह्नित), लेकिन न तो 3 और 1 के बीच और न ही 4 और 4 के बीच। एक अन्य उदाहरण के रूप में, "इसकी बहन" एक संबंध है सभी लोगों के सेट पर, यह धारण करता है उदा। मैरी क्यूरी और ब्रोनिस्लावा डुस्का के बीच, और इसी तरह इसके विपरीत। सेट सदस्य "एक निश्चित डिग्री" के संबंध में नहीं हो सकते हैं, इसलिए उदा। "इसमें कुछ समानता है" एक संबंध नहीं हो सकता।
औपचारिक रूप से, समुच्चय X पर संबंध R को X के सदस्यों के क्रमित युग्मों(x, y) के समुच्चय के रूप में देखा जा सकता है।[1]संबंध R, x और y के बीच रखता है यदि (x, y) R का सदस्य है। उदाहरण के लिए, प्राकृतिक संख्याओं पर संबंध "से कम है" एक अनंत सेट है जिसमें प्राकृतिक संख्याओं के जोड़े शामिल हैं जिनमें दोनों (1, 3) और (3,4), लेकिन न तो (3,1) और न ही (4,4)। एक-अंकीय प्राकृत संख्याओं के समुच्चय पर संबंध "का एक गैर-तुच्छ भाजक है" यहाँ दिखाए जाने के लिए पर्याप्त रूप से छोटा है: Rdiv = { (2,4), (2,6), (2,8), (3, 6), (3,9), (4,8)},उदाहरण के लिए 2 8 का एक गैर-तुच्छ भाजक है, लेकिन इसके विपरीत नहीं, इसलिए (2,8) Rdiv, लेकिन (8,2) Rdiv।
यदि R एक ऐसा संबंध है जो x और y के लिए है तो अक्सर xRy लिखा जाता है। गणित में सबसे आम संबंधों के लिए, विशेष प्रतीकों को पेश किया जाता है, जैसे "<" के लिए "इससे कम है", और "|" के लिए "का एक गैर-तुच्छ भाजक है", और, सबसे लोकप्रिय "=" के लिए "के बराबर है"। उदाहरण के लिए, "1<3", "1 3 से कम है", और "(1,3) Rless" का अर्थ सभी समान है,कुछ लेखक "(1,3) (<)" भी लिखते हैं।
संबंधों के विभिन्न गुणों की जांच की जाती है। एक संबंध R स्वतुल्य है यदि xRx सभी x के लिए धारण करता है, और अपरिवर्तनीय है यदि xRx कोई x के लिए धारण नहीं करता है। यह सममित है यदि xRy का अर्थ हमेशा yRx होता है, और असममित यदि xRy का अर्थ है कि yRx असंभव है। यह सकर्मक है यदि xRy और yRz का अर्थ हमेशा xRz होता है। उदाहरण के लिए, "इससे कम है" अपरिवर्तनीय, असममित और सकर्मक है, लेकिन न तो प्रतिवर्त और न ही सममित, "की बहन है" सममित और संक्रमणीय है, लेकिन न तो प्रतिवर्त (जैसे पियरे क्यूरी खुद की बहन नहीं है) और न ही असममित, जबकि अपरिवर्तनीय होना या न होना परिभाषा का विषय हो सकता है (क्या हर महिला खुद की बहन है?), "पूर्वज है" सकर्मक है, जबकि "माता-पिता" नहीं है। गणितीय प्रमेयों को संबंध गुणों के संयोजन के बारे में जाना जाता है, जैसे "एक संक्रमणीय संबंध अपरिवर्तनीय है, और केवल अगर, यह असममित है"।
विशेष महत्व के संबंध हैं जो गुणों के कुछ संयोजनों को संतुष्ट करते हैं। एक आंशिक क्रम एक ऐसा संबंध है जो अपरिवर्तनीय, असममित और संक्रमणीय है, एक तुल्यता संबंधएक ऐसा संबंध है जो प्रतिवर्त, सममित और संक्रमणीय है,[citation needed]एक फ़ंक्शन एक ऐसा संबंध है जो सही-अद्वितीय और बाएं-कुल है (नीचे देखें) है।[2]
चूंकि संबंध सेट हैं, इसलिए उन्हें सेट ऑपरेशन का उपयोग करके जोड़-तोड़ किया जा सकता है, जिसमें संघ (सेट सिद्धांत), प्रतिच्छेदन, और पूरक (सेट सिद्धांत)शामिल हैं, और सेट के बीजगणित के नियमों को संतुष्ट करते हैं। इसके अलावा, संबंध के विलोम और संबंधों की संरचना संबंधों के गहन विश्लेषण में उन्हें अवधारणा नामक उपसमुच्चय में विघटित करना और उन्हें एक पूर्ण जाली में रखना शामिल है।
संबंध की उपरोक्त अवधारणा[note 1] को दो अलग-अलग सेटों के सदस्यों के बीच संबंधों को स्वीकार करने के लिए सामान्यीकृत किया गया है (विषम संबंध,जैसे सभी बिंदुओं के सेट के बीच "झूठ पर" और ज्यामिति में सभी पंक्तियों के बीच), तीन या अधिक के बीच संबंध सेट (समुच्चय संबंध,जैसे "व्यक्ति x समय z पर शहर y में रहता है"), और वर्ग (गणित)के बीच संबंध[note 2](जैसे सभी सेटों के वर्ग पर "का एक तत्व है", बाइनरी संबंध देखें सेट बनाम वर्ग).
परिभाषा
दिए गए समुच्चय X और Y, कार्तीय गुणनफल X × Y {(x, y) | के रूप में परिभाषित किया गया है x ∈ X और y ∈ Y}, और इसके अवयवों को क्रमित युग्म कहा जाता है।
सेट X और Y पर एक बाइनरी रिलेशन R का एक सबसेट है X × Y.[1][3] सेट X को 'डोमेन' कहा जाता है[1]या R के प्रस्थान का सेट, और सेट Y को कोडोमेन या R के गंतव्य का सेट। सेट X और Y के विकल्पों को निर्दिष्ट करने के लिए, कुछ लेखक एक द्विआधारी संबंध या पत्राचार को एक आदेशित ट्रिपल के रूप में परिभाषित करते हैं (X, Y, G), जहां G का उपसमुच्चय है X × Y बाइनरी रिलेशन का ग्राफ कहा जाता है। कथन (x, y) ∈ R पढ़ता है कि x, R से संबंधित है और इसे infix संकेतन में xRy के रूप में लिखा गया है।[4][5]परिभाषा का डोमेन या सक्रिय डोमेन[1]R का सभी x का ऐसा समुच्चय है कि कम से कम एक y के लिए xRy है। परिभाषा का कोडोमेन, सक्रिय कोडोमेन,[1]छवि (गणित) या R के किसी फलन की श्रेणी सभी y का ऐसा समुच्चय है जो कम से कम एक x के लिए xRy हो। आर का क्षेत्र परिभाषा के अपने डोमेन और परिभाषा के कोडोमेन का संघ है।[6][7][8]
कब X = Y, एक द्विआधारी संबंध को #सजातीय संबंध (या एंडोरेलेशन) कहा जाता है।Cite error: Closing </ref>
missing for <ref>
tag अन्यथा यह एक विषम संबंध है।[9][10][11]
एक द्विआधारी संबंध में, तत्वों का क्रम महत्वपूर्ण होता है,यदि x ≠ y तब yRx, xRy से स्वतंत्र होकर सत्य या असत्य हो सकता है। उदाहरण के लिए, 3 9 को विभाजित करता है, लेकिन 9 3 को विभाजित नहीं करता है।
सजातीय संबंधों के गुण
सजातीय संबंध के कुछ महत्वपूर्ण गुण R एक सेट पर X हो सकता है:
- Reflexive
- सभी के लिए x ∈ X, xRx. उदाहरण के लिए, ≥ एक स्वतुल्य संबंध है लेकिन > नहीं है।
- Irreflexive (या strict)
- सभी के लिए x ∈ X, नहीं xRx. उदाहरण के लिए, > एक अप्रासंगिक संबंध है, लेकिन ≥ नहीं है।
पिछले 2 विकल्प संपूर्ण नहीं हैं,उदाहरण के लिए, लाल बाइनरी संबंध y = x2 खण्ड में दिया गया है § Special types of binary relations न तो अपवर्तक है, न ही प्रतिवर्ती है, क्योंकि इसमें युग्म है (0, 0), लेकिन नहीं (2, 2), क्रमश।
- Symmetric
- सभी के लिए x, y ∈ X, यदि xRy फिर yRx. उदाहरण के लिए, एक रक्त रिश्तेदार एक सममित संबंध है, क्योंकि x का रक्त संबंधी है y अगर और केवल अगर y का रक्त संबंधी है x.
- Antisymmetric
- सभी के लिए x, y ∈ X, यदि xRy तथा yRx फिर x = y. उदाहरण के लिए, ≥ एक असममित संबंध है,ऐसा है>, लेकिन रिक्त सत्य (परिभाषा में स्थिति हमेशा गलत होती है)।[12]
- Asymmetric
- सभी के लिए x, y ∈ X, यदि xRy फ़िर नही yRx. एक संबंध असममित है यदि और केवल यदि यह प्रतिसममित और अपरिवर्तनीय दोनों है।[13] उदाहरण के लिए, > एक असममित संबंध है, लेकिन ≥ नहीं है।
फिर से, पिछले 3 विकल्प संपूर्ण होने से बहुत दूर हैं,प्राकृतिक संख्या, संबंध पर एक उदाहरण के रूप में xRy द्वारा परिभाषित x > 2 न तो सममित है और न ही विषम है, अकेले असममित होने दें।
- Transitive
- सभी के लिए x, y, z ∈ X, यदि xRy तथा yRz फिर xRz. एक सकर्मक संबंध अपरिवर्तनीय है अगर और केवल अगर यह असममित है।[14] उदाहरण के लिए, का पूर्वज सकर्मक संबंध है, जबकि का जनक नहीं है।
- Dense
- सभी के लिए x, y ∈ X ऐसा है कि xRy, कुछ मौजूद है z ∈ X ऐसा है कि xRz तथा zRy. इसका उपयोग घने आदेशों में किया जाता है।
- Connected
- सभी के लिए x, y ∈ X, यदि x ≠ y फिर xRy या yRx. इस संपत्ति को कभी-कभी कुल कहा जाता है, जो खंड में दी गई कुल परिभाषा से अलग है Relation (mathematics) § Properties of (heterogeneous) relations.
- Strongly connected
- सभी के लिए x, y ∈ X, xRy या yRx. इस संपत्ति को कभी-कभी कुल कहा जाता है, जो खंड में दी गई कुल परिभाषा से अलग है Relation (mathematics) § Properties of (heterogeneous) relations.
- Trichotomous
- सभी के लिए x, y ∈ X, बिल्कुल एक xRy, yRx या x = y रखती है। उदाहरण के लिए, > एक त्रिगुणात्मक संबंध है, जबकि प्राकृतिक संख्याओं पर विभाजित संबंध नहीं है।[15]
- Well-founded
- हर गैर-खाली सबसेट S का X के संबंध में एक अधिकतम और न्यूनतम तत्व शामिल हैं R. अच्छी तरह से स्थापित होने का तात्पर्य अवरोही श्रृंखला की स्थिति से है (अर्थात, कोई अनंत श्रृंखला नहीं है ... xnR...Rx3Rx2Rx1 मौजूद हो सकता है)। यदि आश्रित पसंद का स्वयंसिद्ध मान लिया जाए, तो दोनों स्थितियाँ समतुल्य हैं।[16][17]
- Preorder
- एक रिश्ता जो स्वतुल्य और सकर्मक है।
- Total preorder (भी, linear preorder या weak order)
- एक संबंध जो प्रतिवर्त, सकर्मक और जुड़ा हुआ है।
- Partial order (भी, order[citation needed])
- एक संबंध जो प्रतिवर्ती, प्रतिसममित और सकर्मक है।
- Strict partial order (भी, strict order[citation needed])
- एक संबंध जो अप्रासंगिक, प्रतिसममित और सकर्मक है।
- Total order (भी, linear order, simple order, या chain)
- एक संबंध जो प्रतिवर्त, प्रतिसममित, सकर्मक और जुड़ा हुआ है।[18]
- Strict total order (भी, strict linear order, strict simple order, या strict chain)
- एक संबंध जो अप्रतिवर्ती, प्रतिसममित, सकर्मक और जुड़ा हुआ है।
- Partial equivalence relation
- एक संबंध जो सममित और सकर्मक है।
- Equivalence relation
- एक संबंध जो स्वतुल्य, सममित और सकर्मक है। यह एक ऐसा संबंध भी है जो सममित, सकर्मक और क्रमिक है, क्योंकि ये गुण प्रतिवर्तता का संकेत देते हैं।
(विषम) संबंधों के गुण
सेट X और Y पर कुछ महत्वपूर्ण प्रकार के बाइनरी संबंध R नीचे सूचीबद्ध हैं।
विशिष्टता गुण:
- इंजेक्शन (जिसे वाम-अद्वितीय भी कहा जाता है)[19] सभी के लिए x, z ∈ X और सभी y ∈ Y, यदि xRy तथा zRy फिर x = z. ऐसे संबंध के लिए, {Y} को R की प्राथमिक कुंजी कहा जाता है।[1]उदाहरण के लिए, आरेख में हरे और नीले द्विआधारी संबंध इंजेक्शन हैं, लेकिन लाल वाला नहीं है (क्योंकि यह -1 और 1 से 1 दोनों से संबंधित है), न ही काला वाला (क्योंकि यह -1 और 1 से 0 दोनों से संबंधित है) .
- कार्यात्मक (जिसे सही-अद्वितीय भी कहा जाता है,[19]सही-निश्चित[20] या असंबद्ध)
- [21] सभी के लिए x ∈ X और सभी y, z ∈ Y, यदि xRy तथा xRz फिर y = z. इस तरह के बाइनरी रिलेशन को कहा जाता है partial function. ऐसे संबंध के लिए, {X} कहा जाता है a primary key आर का[1]उदाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कार्यात्मक हैं, लेकिन नीला नहीं है (क्योंकि यह 1 से -1 और 1 दोनों से संबंधित है), और न ही काला वाला (क्योंकि यह 0 से -1 और 1 दोनों से संबंधित है) .
- एक-से-एक
- इंजेक्शन और कार्यात्मक। उदाहरण के लिए, आरेख में हरा बाइनरी संबंध एक-से-एक है, लेकिन लाल, नीला और काला नहीं है।
- एक-से-कई
- इंजेक्शन और कार्यात्मक नहीं। उदाहरण के लिए, आरेख में नीला बाइनरी संबंध एक-से-कई है, लेकिन लाल, हरा और काला नहीं है।
- कई-से-एक
- कार्यात्मक और इंजेक्शन नहीं। उदाहरण के लिए, आरेख में लाल बाइनरी संबंध कई-से-एक है, लेकिन हरा, नीला और काला नहीं है।
- मैनी-टू-मैनी
- न तो इंजेक्टिव और न ही फंक्शनल। उदाहरण के लिए, आरेख में काला बाइनरी संबंध कई-से-अनेक है, लेकिन लाल, हरा और नीला नहीं है।
संपूर्णता गुण (केवल तभी परिभाषित किया जा सकता है जब डोमेन X और कोडोमेन Y निर्दिष्ट हों):
- कुल (बाएं-कुल भी कहा जाता है)
- एक्स में सभी एक्स के लिए वाई में ऐसा मौजूद है xRy. दूसरे शब्दों में, R की परिभाषा का डोमेन X के बराबर है। यह संपत्ति जुड़ा हुआ संबंध की परिभाषा से अलग है (जिसे कुछ लेखकों द्वारा टोटल भी कहा जाता है)[citation needed] खंड बाइनरी संबंध # गुण में। इस तरह के बाइनरी रिलेशन को बहुविकल्पी समारोह कहा जाता है। उदाहरण के लिए, आरेख में लाल और हरे रंग के द्विआधारी संबंध कुल हैं, लेकिन नीला वाला नहीं है (क्योंकि यह -1 को किसी वास्तविक संख्या से संबंधित नहीं करता है), और न ही काला वाला (क्योंकि यह 2 को किसी वास्तविक संख्या से संबंधित नहीं करता है) ).
- Serial (या left-total)
- सभी के लिए x ∈ X, कुछ मौजूद है y ∈ X ऐसा है कि xRy. उदाहरण के लिए, > पूर्णांकों पर एक क्रमिक संबंध है। लेकिन यह धनात्मक पूर्णांकों पर क्रमिक संबंध नहीं है, क्योंकि ऐसा नहीं है y सकारात्मक पूर्णांकों में जैसे कि 1 > y.[22] हालाँकि, <धनात्मक पूर्णांकों, परिमेय संख्याओं और वास्तविक संख्याओं पर एक क्रमिक संबंध है। हर रिफ्लेक्सिव रिलेशन सीरियल है: दिए गए के लिए x, चुनें y = x.
- विशेषण (जिसे राइट-टोटल भी कहा जाता है[19]or on)
- Y में सभी y के लिए, X में एक x मौजूद है जैसे कि xRy। दूसरे शब्दों में, R की परिभाषा का कोडोमेन Y के बराबर है। उदाहरण के लिए, आरेख में हरे और नीले रंग के बाइनरी संबंध विशेषण हैं, लेकिन लाल नहीं है (क्योंकि यह किसी वास्तविक संख्या को -1 से संबंधित नहीं करता है), न ही काला वाला (क्योंकि यह किसी भी वास्तविक संख्या को 2 से संबंधित नहीं करता है)।
विशिष्टता और समग्रता गुण (केवल डोमेन एक्स और कोडोमेन वाई निर्दिष्ट होने पर परिभाषित किया जा सकता है):
- ए function
- एक द्विआधारी संबंध जो कार्यात्मक और कुल है। उदाहरण के लिए, आरेख में लाल और हरे रंग के बाइनरी संबंध कार्य हैं, लेकिन नीले और काले वाले नहीं हैं।
- एक injection
- एक फ़ंक्शन जो इंजेक्शन है। उदाहरण के लिए, आरेख में हरे रंग का बाइनरी संबंध एक इंजेक्शन है, लेकिन लाल, नीला और काला नहीं है।
- ए surjection
- एक कार्य जो विशेषण है। उदाहरण के लिए, आरेख में हरा बाइनरी संबंध एक अनुमान है, लेकिन लाल, नीला और काला नहीं है।
- ए bijection
- एक फलन जो अंतःक्षेपी और आच्छादक है। उदाहरण के लिए, आरेख में हरा बाइनरी संबंध एक आक्षेप है, लेकिन लाल, नीला और काला नहीं है।
सजातीय संबंधों पर संचालन
यदि R एक सेट X पर एक सजातीय संबंध है तो निम्नलिखित में से प्रत्येक X पर एक सजातीय संबंध है:
- Reflexive closure
- आर= , R के रूप में परिभाषित किया गया है=</सुप> = {(एक्स, एक्स) | x ∈ X} ∪ R या R युक्त X पर सबसे छोटा रिफ्लेक्सिव संबंध। यह R वाले सभी रिफ्लेक्सिव संबंधों के प्रतिच्छेदन (सेट सिद्धांत) के बराबर साबित हो सकता है।
- Reflexive reduction
- आर≠, R के रूप में परिभाषित किया गया है≠ = R \ {(x, x) | x ∈ X} या R में निहित X पर सबसे बड़ा अप्रासंगिक संबंध।
- Transitive closure
- आर+, R युक्त X पर सबसे छोटे सकर्मक संबंध के रूप में परिभाषित किया गया है। इसे R वाले सभी सकर्मक संबंधों के प्रतिच्छेदन के बराबर देखा जा सकता है।
- Reflexive transitive closure
- आर *, के रूप में परिभाषित किया गया R* = (R+)=, सबसे छोटा पूर्व आदेश जिसमें R है।
- Reflexive transitive symmetric closure
- आर≡, R वाले X पर सबसे छोटे समतुल्य संबंध के रूप में परिभाषित किया गया है।
अनुभाग में परिभाषित सभी ऑपरेशन § Operations on binary relations सजातीय संबंधों पर भी लागू होता है।
Homogeneous relations by property Reflexivity Symmetry Transitivity Connectedness Symbol Example Directed graph → Undirected graph Symmetric Dependency Reflexive Symmetric Tournament Irreflexive Antisymmetric Pecking order Preorder Reflexive Yes ≤ Preference Total preorder Reflexive Yes Yes ≤ Partial order Reflexive Antisymmetric Yes ≤ Subset Strict partial order Irreflexive Antisymmetric Yes < Strict subset Total order Reflexive Antisymmetric Yes Yes ≤ Alphabetical order Strict total order Irreflexive Antisymmetric Yes Yes < Strict alphabetical order Partial equivalence relation Symmetric Yes Equivalence relation Reflexive Symmetric Yes ∼, ≡ Equality
(विषम) संबंधों पर संचालन
- Union
- यदि आर और एस सेट एक्स और वाई पर द्विआधारी संबंध हैं तो R ∪ S = {(x, y) | xRy या xSy है union relation X और Y के ऊपर R और S का। पहचान तत्व खाली संबंध है। उदाहरण के लिए, ≤ < और = का मिलन है, और ≥ > और = का मिलन है।
- Intersection
- यदि आर और एस सेट एक्स और वाई पर द्विआधारी संबंध हैं तो R ∩ S = {(x, y) | xRy और xSy है intersection relation एक्स और वाई पर आर और एस का। पहचान तत्व सार्वभौमिक संबंध है। उदाहरण के लिए, संबंध 6 से विभाज्य है संबंधों का प्रतिच्छेदन 3 से विभाज्य है और 2 से विभाज्य है।
- Composition
- यदि R सेट X और Y पर एक बाइनरी रिलेशन है, और S सेट Y और Z पर एक बाइनरी रिलेशन है तो S ∘ R = {(x, z) | वहाँ y ∈ Y का अस्तित्व है जैसे कि xRy और ySz} (द्वारा भी निरूपित) R; S) है composition relation एक्स और जेड पर आर और एस का। पहचान तत्व पहचान संबंध है। अंकन में R और S का क्रम S ∘ R, यहाँ प्रयुक्त कार्यों की संरचना के लिए मानक अंकन क्रम से सहमत है। उदाहरण के लिए, रचना ∘ की जननी है, उपज की जननी है, की नानी है, जबकि रचना ∘ की जननी है, उपज की जननी है। पूर्व मामले के लिए, यदि x, y का माता-पिता है और y, z की माता है, तो x, z का नाना-नानी है।
- Converse
- यदि R समुच्चय X और Y पर एक द्विआधारी संबंध है तो Rटी</सुप> = {(वाई, एक्स) | xRy} Y और X पर R का विलोम संबंध है। उदाहरण के लिए, = स्वयं का विलोम है, जैसा ≠ है, और < और > एक दूसरे के विलोम हैं, जैसे ≤ और ≥ हैं। एक द्विआधारी संबंध इसके विलोम के बराबर है यदि और केवल यदि यह सममित संबंध है।
- Complement
- यदि R समुच्चय X और Y पर एक द्विआधारी संबंध है तो R = {(एक्स, वाई) | xRy नहीं (द्वारा भी दर्शाया गया है
Rया ¬ R) X और Y पर R का पूरक संबंध है। उदाहरण के लिए, = और ≠ एक दूसरे के पूरक हैं, जैसे ⊆ और ⊈, ⊇ और ⊉, और ∈ और ∉, और, कुल ऑर्डर के लिए भी < और ≥, और > और ≤. विलोम संबंध का पूरक RT पूरक का विलोम है: - Restriction
- यदि R एक समुच्चय X पर एक द्विआधारी सजातीय संबंध है और S, X का एक उपसमुच्चय है तो R|S = {(एक्स, वाई) | xRy और x ∈ S और y ∈ S} है restriction relation का R से S के ऊपर X। यदि R, X और Y के सेट पर एक द्विआधारी संबंध है और यदि S, X का एक उपसमूह है तो R|S = {(एक्स, वाई) | xRy और x ∈ S} है {{em|left-restriction relation}एक्स और वाई पर आर से एस का }। यदि आर सेट एक्स और वाई पर एक द्विआधारी संबंध है और यदि एस वाई का सबसेट है तो R|एस = {(एक्स, वाई) | xRy और y ∈ S} है {{em|right-restriction relation}एक्स और वाई पर आर से एस का }। यदि कोई संबंध रिफ्लेक्टिव संबंध, अपरिवर्तनीय, सममित संबंध, एंटीसिमेट्रिक संबंध, असममित संबंध, सकर्मक संबंध, सीरियल संबंध, ट्राइकोटॉमी (गणित), एक आंशिक क्रम, कुल आदेश, सख्त कमजोर क्रम है, सख्त कमजोर आदेश#कुल पूर्व आदेश (कमजोर आदेश), या एक तुल्यता संबंध, फिर भी इसके प्रतिबंध हैं। हालांकि, एक प्रतिबंध का सकर्मक समापन सकर्मक बंद होने के प्रतिबंध का एक उपसमुच्चय है, अर्थात, सामान्य रूप से समान नहीं है। उदाहरण के लिए, महिलाओं के लिए y का जनक x है संबंध को प्रतिबंधित करने से संबंध x, महिला y की मां है,इसका सकर्मक समापन एक महिला को उसकी नानी से संबंधित नहीं करता है। दूसरी ओर, के माता-पिता का सकर्मक समापन है का पूर्वज है,महिलाओं के लिए इसका प्रतिबंध एक महिला को उसकी नानी से जोड़ता है।
एक बाइनरी रिलेशन R ओवर सेट X और Y कहा जाता है contained in X और Y पर एक संबंध S लिखा है यदि R, S का उपसमुच्चय है, अर्थात सभी के लिए तथा अगर xRy, तो xSy। यदि R, S में समाहित है और S, R में समाहित है, तो R और S को बराबर लिखा R = S कहा जाता है। यदि R, S में समाहित है, लेकिन S, R में समाहित नहीं है, तो R को कहा जाता है smaller S से, लिखा हुआ R ⊊ S. उदाहरण के लिए, परिमेय संख्याओं पर संबंध > ≥ से छोटा होता है, और संघटन के बराबर होता है > ∘ >.
उदाहरण
- सख्त आदेश सहित आदेश संबंध:
- तुल्यता संबंध:
- समानता (गणित)
- समानांतर (ज्यामिति) के साथ (एफ़िन रिक्त स्थान के लिए)
- के साथ आपत्ति में है
- समरूपता
- टॉलरेंस रिलेशन, एक रिफ्लेक्सिव और सिमेट्रिक रिलेशन:
- निर्भरता संबंध, एक परिमित सहिष्णुता संबंध
- स्वतंत्रता संबंध, कुछ निर्भरता संबंध का पूरक
- रिश्तेदारी#संबंधों की संरचना
यह भी देखें
- सार पुनर्लेखन प्रणाली
- योज्य संबंध, मॉड्यूल के बीच एक बहु-मूल्यवान समरूपता
- संबंधों की श्रेणी, वस्तुओं के रूप में सेट वाली श्रेणी और आकारिकी के रूप में विषम द्विआधारी संबंध
- संगम (शब्द पुनर्लेखन), द्विआधारी संबंधों के कई असामान्य लेकिन मौलिक गुणों पर चर्चा करता है
- पत्राचार (बीजीय ज्यामिति), बीजगणितीय समीकरणों द्वारा परिभाषित एक द्विआधारी संबंध
- हस्स आरेख, एक ग्राफिक का मतलब ऑर्डर संबंध प्रदर्शित करना है
- घटना संरचना, बिंदुओं और रेखाओं के सेट के बीच एक विषम संबंध
- रिश्तेदारों का तर्क, चार्ल्स सैंडर्स पियर्स द्वारा संबंधों का एक सिद्धांत
- आदेश सिद्धांत, आदेश संबंधों के गुणों की जांच करता है
टिप्पणियाँ
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Codd, Edgar Frank (June 1970). "बड़े साझा डेटा बैंकों के लिए डेटा का एक संबंधपरक मॉडल" (PDF). Communications of the ACM. 13 (6): 377–387. doi:10.1145/362384.362685. S2CID 207549016. Retrieved 2020-04-29.
- ↑ "संबंध परिभाषा - गणित अंतर्दृष्टि". mathinsight.org. Retrieved 2019-12-11.
- ↑ Enderton 1977, Ch 3. pg. 40
- ↑ Ernst Schröder (1895) Algebra und Logic der Relative, via Internet Archive
- ↑ C. I. Lewis (1918) A Survey of Symbolic Logic , pages 269 to 279, via internet Archive
- ↑ Suppes, Patrick (1972) [originally published by D. van Nostrand Company in 1960]. Axiomatic Set Theory. Dover. ISBN 0-486-61630-4.
- ↑ Smullyan, Raymond M.; Fitting, Melvin (2010) [revised and corrected republication of the work originally published in 1996 by Oxford University Press, New York]. Set Theory and the Continuum Problem. Dover. ISBN 978-0-486-47484-7.
- ↑ Levy, Azriel (2002) [republication of the work published by Springer-Verlag, Berlin, Heidelberg and New York in 1979]. Basic Set Theory. Dover. ISBN 0-486-42079-5.
- ↑ Schmidt, Gunther; Ströhlein, Thomas (2012). संबंध और रेखांकन: कंप्यूटर वैज्ञानिकों के लिए असतत गणित. Definition 4.1.1.: Springer Science & Business Media. ISBN 978-3-642-77968-8.
{{cite book}}
: CS1 maint: location (link) - ↑ Christodoulos A. Floudas; Panos M. Pardalos (2008). अनुकूलन का विश्वकोश (2nd ed.). Springer Science & Business Media. pp. 299–300. ISBN 978-0-387-74758-3.
- ↑ Michael Winter (2007). गोगुएन श्रेणियाँ: एल-फ़ज़ी संबंधों के लिए एक स्पष्ट दृष्टिकोण. Springer. pp. x–xi. ISBN 978-1-4020-6164-6.
- ↑ Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2006), A Transition to Advanced Mathematics (6th ed.), Brooks/Cole, p. 160, ISBN 0-534-39900-2
- ↑ Nievergelt, Yves (2002), Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography, Springer-Verlag, p. 158.
- ↑ Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (2007). बाइनरी रिलेशंस का सकर्मक क्लोजर I (PDF). Prague: School of Mathematics – Physics Charles University. p. 1. Archived from the original (PDF) on 2013-11-02. Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".
- ↑ Since neither 5 divides 3, nor 3 divides 5, nor 3=5.
- ↑ "अच्छी तरह से स्थापित होने की स्थिति". ProofWiki. Archived from the original on 20 February 2019. Retrieved 20 February 2019.
- ↑ Fraisse, R. (15 December 2000). संबंधों का सिद्धांत, खंड 145 - पहला संस्करण (1st ed.). Elsevier. p. 46. ISBN 9780444505422. Retrieved 20 February 2019.
- ↑ Joseph G. Rosenstein, Linear orderings, Academic Press, 1982, ISBN 0-12-597680-1, p. 4
- ↑ 19.0 19.1 19.2 Kilp, Knauer and Mikhalev: p. 3. The same four definitions appear in the following:
- Peter J. Pahl; Rudolf Damrath (2001). Mathematical Foundations of Computational Engineering: A Handbook. Springer Science & Business Media. p. 506. ISBN 978-3-540-67995-0.
- Eike Best (1996). Semantics of Sequential and Parallel Programs. Prentice Hall. pp. 19–21. ISBN 978-0-13-460643-9.
- Robert-Christoph Riemann (1999). Modelling of Concurrent Systems: Structural and Semantical Methods in the High Level Petri Net Calculus. Herbert Utz Verlag. pp. 21–22. ISBN 978-3-89675-629-9.
- ↑ Mäs, Stephan (2007), "Reasoning on Spatial Semantic Integrity Constraints", Spatial Information Theory: 8th International Conference, COSIT 2007, Melbourne, Australia, September 19–23, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4736, Springer, pp. 285–302, doi:10.1007/978-3-540-74788-8_18
- ↑ Gunther Schmidt, 2010. Relational Mathematics. Cambridge University Press, ISBN 978-0-521-76268-7, Chapt. 5
- ↑ Yao, Y.Y.; Wong, S.K.M. (1995). "विशेषता मानों के बीच संबंधों का उपयोग करते हुए किसी न किसी सेट का सामान्यीकरण" (PDF). Proceedings of the 2nd Annual Joint Conference on Information Sciences: 30–33..
ग्रन्थसूची
- Codd, Edgar Frank (1990). The Relational Model for Database Management: Version 2 (PDF). Boston: Addison-Wesley. ISBN 978-0201141924.
- Enderton, Herbert (1977). Elements of Set Theory. Boston: Academic Press. ISBN 978-0-12-238440-0.
- Kilp, Mati; Knauer, Ulrich; Mikhalev, Alexander (2000). Monoids, Acts and Categories: with Applications to Wreath Products and Graphs. Berlin: De Gruyter. ISBN 978-3-11-015248-7.
- Peirce, Charles Sanders (1873). "Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole's Calculus of Logic". Memoirs of the American Academy of Arts and Sciences. 9 (2): 317–178. doi:10.2307/25058006. hdl:2027/hvd.32044019561034. JSTOR 25058006. Retrieved 2020-05-05.
- Schmidt, Gunther (2010). Relational Mathematics. Cambridge: Cambridge University Press. ISBN 978-0-521-76268-7.