This is a good article. Click here for more information.

समग्र छवि फ़िल्टर

From Vigyanwiki
Revision as of 12:56, 1 November 2022 by alpha>Deepali

समग्र छवि फ़िल्टर एक इलेक्ट्रॉनिक फिल्टर होता है जिसमें दो या अधिक अलग-अलग क्षेत्र के एकाधिक छवि फ़िल्टर वर्ग होते हैं।

फिल्टर डिजाइन की छवि विधि ऐसे वर्गों की अनंत श्रृंखला में उनके गुणों की गणना करके फिल्टर वर्गों के गुणों को निर्धारित करती है। इसमें, विश्लेषण संचरण लाइन सिद्धांत के समानांतर है जिस पर यह आधारित है। इस विधि द्वारा डिज़ाइन किए गए फ़िल्टरों को छवि पैरामीटर फिल्टर, या सिर्फ छवि फिल्टर कहा जाता है। छवि फिल्टर का एक महत्वपूर्ण पैरामीटर उनकी छवि प्रतिबाधा, समान वर्गों की अनंत श्रृंखला की प्रतिबाधा है।

बुनियादी वर्गों को कई वर्गों के निःश्रेणी नेटवर्क में व्यवस्थित किया जाता है, आवश्यक वर्गों की संख्या ज्यादातर स्टॉपबैंड अस्वीकृति की मात्रा से निर्धारित होती है। अपने सरलतम रूप में, फिल्टर पूरी तरह से समान वर्गों से मिलकर बना सकता है। हालांकि, किसी विशेष क्षेत्र द्वारा संबोधित किए गए विभिन्न मापदंडों में सुधार के लिए दो या तीन अलग-अलग क्षेत्र के वर्गों के मिश्रित फिल्टर का उपयोग करना सामान्य है। सबसे अधिक बार विचार किए जाने वाले मापदंडों में स्टॉपबैंड अस्वीकृति, फिल्टर स्कर्ट ( परिवर्तन बैंड) की स्थिरता और फिल्टर टर्मिनेशन से प्रतिबाधा मिलान शामिल हैं।

छवि फिल्टर रैखिक फिल्टर होते हैं और हमेशा कार्यान्वयन में भी निष्क्रिय होते हैं।

इतिहास

फिल्टर डिजाइन करने की छवि विधि AT&T पर निर्धारित हुई, जो एकल केबल पर कई टेलीफोन चैनलों के बहुभाजन के साथ उपयोग किए जाने वाले फिल्टर विकसित करने में रुचि रखते थे। इस कार्य में शामिल शोधकर्ताओं और उनके योगदान को संक्षेप में नीचे सूचीबद्ध किया गया है;

  • जॉन रेनशॉ कार्सन ने इस सिद्धांत को गणितीय आधार प्रदान किया। उन्होंने बहुसंकेतन टेलीफोन चैनलों के उद्देश्य से एकल-साइड बैंड प्रतिरुपण का आविष्कार किया। इन संकेतों को ठीक करने की आवश्यकता थी जिससे उन्नत फिल्टरिंग तकनीकों की आवश्यकता बढ़ी। उन्होंने इन संकेतों का विश्लेषण करने के लिए परिचालन गणना (जो अब अपने अधिक औपचारिक गणितीय में लाप्लास ट्रांसफॉर्म बन गया है) के उपयोग का बीड़ा उठाया है[1]
  • जॉर्ज एशले कैंपबेल ने 1910 से फ़िल्टरिंग पर काम किया और निरंतर k फ़िल्टर का आविष्कार किया।[2] इसे प्रसारण लाइनों पर कॉयल को लोड करने पर उनके काम की निरंतरता के रूप में देखा जा सकता है, एक अवधारणा जो ओलिवर हीविसाइड द्वारा आविष्कार की गई थी। संयोग से, हेवीसाइड ने कार्सन द्वारा उपयोग किए जाने वाले परिचालन कलन का भी आविष्कार किया।
  • ओटो ज़ोबेल ने कैंपबेल के फिल्टर के लिए एक सैद्धांतिक आधार (और नाम) प्रदान किया। 1920 में उन्होंने m-व्युत्पन्न फिल्टर का आविष्कार किया। ज़ोबेल ने स्थिर k और m-व्युत्पन्न दोनों वर्गों को सम्मिलित करते हुए मिश्रित डिजाइन भी प्रकाशित किए।[3]
  • आर एस होयत ने भी योगदान दिया।[4][5]


छवि विधि

छवि विश्लेषण इनपुट और आउटपुट प्रतिबाधा (प्रतिबाधा) की गणना और समान वर्गों की अनंत श्रृंखला में एक वर्ग के हस्तांतरण कार्य के साथ शुरू होता है। इसे छवि प्रतिबाधाओं में समाप्त किए गए वर्ग के प्रदर्शन के समतुल्य दिखाया जा सकता है।[6] इसलिए, छवि विधि प्रत्येक फिल्टर वर्ग पर निर्भर करती है जिसे सही छवि प्रतिबाधा के साथ समाप्त किया जा रहा है। यह एक बहु वर्ग फिल्टर के आंतरिक वर्गों के साथ संबंध करने के लिए पर्याप्त है, क्योंकि यह केवल यह सुनिश्चित करना आवश्यक है कि प्रश्न में सामना करने वाले वर्गों में समान छवि प्रतिबाधाएं हों। हालांकि, अंत वर्ग एक समस्या है। उन्हें आमतौर पर निश्चित प्रतिरोधों के साथ समाप्त किया जाएगा कि फिल्टर एक विशिष्ट आवृत्ति को छोड़कर पूरी तरह से मेल नहीं खा सकता है। इस बेमेल से फिल्टर समाप्ति पर और वर्गों के बीच जंक्शन पर कई प्रतिबिंब होते हैं। इन प्रतिबिंबों के परिणामस्वरूप, विशेष रूप से कट-ऑफ आवृत्ति के निकट, सैद्धांतिक से काफी तेजी से विचलन होता है।[7]

अंत प्रतिबाधा से बेहतर मिलानकी आवश्यकता समग्र फिल्टर का उपयोग करने के लिए मुख्य प्रेरणाओं में से एक है। अच्छे मिलान देने के लिए डिजाइन किया गया एक वर्ग अंत में उपयोग किया जाता है लेकिन कुछ और (उदाहरण के लिए बंद करने के लिए बैंड अस्वीकृति या पासबैंड को रोकने के लिए) फ़िल्टर के शरीर के लिए डिज़ाइन किया गया है।

फ़िल्टर वर्ग क्षेत्र

प्रत्येक फिल्टर वर्ग क्षेत्र के विशेष लाभ और नुकसान होते हैं और प्रत्येक में विशेष फिल्टर मापदंडों को सुधारने की क्षमता होती है। नीचे वर्णित वर्ग निम्न-पास वर्गों के लिए प्रोटोटाइप फिल्टर हैं। इन प्रोटोटाइपों को बढ़ाया जा सकता है और वांछित आवृत्ति बैंडफॉर्म ( कम-पास, उच्च-पास, बैंड-पास या बैंड-स्टॉप ) में बदला जा सकता है।

छवि फ़िल्टर की सबसे छोटी इकाई L आधा वर्ग है। क्योंकि L वर्ग सममित नहीं है, इसमें हर तरफ अलग-अलग छवि प्रतिबाधाएं हैं ()। ये तथा दर्शाए गए हैं। प्रत्यय में T और Π फ़िल्टर वर्ग के आकार को संदर्भित करते हैं जो कि दो आधे वर्ग को बैक-टू-बैक कनेक्ट करने के लिए बनाया जाएगा। T और Π सबसे छोटे सममित वर्ग हैं जिनका निर्माण किया जा सकता है, जैसा कि टोपोलॉजी चार्ट (नीचे) में आरेखों में दिखाया गया है। जहां प्रश्न में भाग में एक छवि प्रतिबाधा सामान्य मामले से अलग होती है, वहां एक और प्रत्यय जोड़ा जाता है, उदाहरण के लिए, एक और प्रत्यय जोड़ा जाता है।

Image filter sections
 
Unbalanced
L Half section T Section Π Section
Image Filter L Half-section.svg
Image filter T Section.svg
Image filter Pi Section.svg
Ladder network
Image Filter Ladder Network (Unbalanced).svg
 
Balanced
C Half-section H Section Box Section
Image Filter C Half-section.svg
Image Filter H Section.svg
Image Filter Box Section.svg
Ladder network
Image Filter Ladder Network (Balanced).svg
X Section (mid-T-Derived) X Section (mid-Π-Derived)
Image filter X Section.svg
Image filter X Section (Pi-Derived).svg
N.B. Textbooks and design drawings usually show the unbalanced implementations, but in telecoms it is often required to convert the design to the balanced implementation when used with balanced lines. edit


स्थिरांक के वर्ग

स्थिर k या k- क्षेत्र फ़िल्टर वर्ग मूल छवि फ़िल्टर वर्ग है। यह सबसे सरल सर्किट टोपोलॉजी भी है। k- क्षेत्र में पासबैंड से स्टॉपबैंड में मध्यम तेजी से परिवर्तन होता है और मध्यम रूप से अच्छा स्टॉपबैंड अस्वीकृति होता है।


m-व्युत्पन्न वर्ग

m-व्युत्पन्न या m- क्षेत्र फ़िल्टर वर्ग k- क्षेत्र वर्ग का विकास है। m- क्षेत्र की सबसे प्रमुख विशेषता स्टॉपबैंड के अंदर कट-ऑफ आवृत्ति के ठीक पहले क्षीणन का एक ध्रुव है। पैरामीटर m (0<m<1) क्षीणन के इस ध्रुव की स्थिति को समायोजित करता है। m के छोटे मान ध्रुव को कट-ऑफ आवृत्ति के करीब रखते हैं। m के बड़े मान इसे और दूर कर देते हैं। सीमा में, जैसे ही m एकता के करीब पहुंचता है, ध्रुव अनंत के तक पहुंचता है और वर्ग k- क्षेत्र के खंड के पास पहुंचता है।

m- क्षेत्र में विशेष रूप से तेज कट-ऑफ है, जो कट-ऑफ आवृत्ति पर पूरी तरह से पास से ध्रुव आवृत्ति पर पूरी तरह से रुकने के लिए जा रहा है। पोल को कट-ऑफ आवृत्ति के करीब ले जाकर कट-ऑफ को तेज किया जा सकता है। इस फ़िल्टर में किसी भी फ़िल्टर डिज़ाइन का सबसे तेज़ कट-ऑफ है; ध्यान दें कि तेजी से परिवर्तन केवल एक ही वर्ग के साथ प्राप्त किया जाता है, कई वर्गों की आवश्यकता नहीं है। m- क्षेत्र के वर्गों के साथ दोष यह है कि क्षीणन के ध्रुव के बाद उनके पास खराब स्टॉपबैंड अस्वीकृति है।

m=0.6 के साथ m- क्षेत्र फिल्टर की एक विशेष रूप से उपयोगी संपत्ति है। इनमें पासबैंड में अधिकतम सपाट छवि प्रतिबाधा होती है। इसलिए वे फिल्टर अंतभाग से मेल खाने के लिए अच्छे हैं, कम से कम पासबैंड में, स्टॉपबैंड एक और खंड है।

m- क्षेत्र वर्ग के दो रूपांतर सीरीज और शंट हैं। उनके पास समान स्थानांतरण कार्य हैं लेकिन उनकी छवि प्रतिबाधाएं भिन्न हैं। शंट आधे- वर्ग में एक छवि प्रतिबाधा है जो से मेल खाती है लेकिन एक अलग प्रतिबाधा है। श्रृंखला का आधा भाग एक तरफ और दूसरे पर है।


mm'- क्षेत्र वर्ग

mm ' क्षेत्र वर्ग में दो स्वतंत्र पैरामीटर (m और m) होते हैं जो डिजाइनर समायोजित कर सकते हैं। यह m- व्युत्पत्ति प्रक्रिया के दोहरे अनुप्रयोग द्वारा प्राप्त किया जाता है। इसका मुख्य लाभ यह है कि k- क्षेत्र या m- क्षेत्र की तुलना में प्रतिरोध समापन में मिलानकरना बेहतर है। एक अर्ध- वर्ग की छवि प्रतिबाधा एक तरफ और दूसरे पर एक अलग प्रतिबाधा, है। m- क्षेत्र की तरह, इस वर्ग को एक श्रृंखला या शंट वर्ग के रूप में बनाया जा सकता है और छवि प्रतिबाधा T और Π रूपों में आ जाएगी। या तो एक श्रृंखला निर्माण एक शंट m- क्षेत्र पर लागू होता है या एक शंट निर्माण एक श्रृंखला m- क्षेत्र पर लागू होता है। mm'- क्षेत्र के फ़िल्टर के लाभ अधिक सर्किट जटिलता की कीमत पर प्राप्त किए जाते हैं, इसलिए इसे सामान्य रूप से केवल वहीं उपयोग किया जाएगा जहां प्रतिबाधा मिलानउद्देश्यों के लिए इसकी आवश्यकता होती है, न कि फ़िल्टर के मुख्य भाग में।

एक mm ' क्षेत्र का स्थानांतरण कार्य m सेट के साथ उत्पाद mm में m- क्षेत्र के समान है। सर्वश्रेष्ठ प्रतिबाधा मिलानके लिए m और m' के मूल्यों को चुनने के लिए डिजाइनर को दो आवृत्तियों को चुनने की आवश्यकता होती है, जिस पर मिलानसटीक होना है, अन्य आवृत्तियों पर कुछ विचलन होगा। इस क्षेत्र चयन में कुछ छूट है, लेकिन जोबेल ने[8] मान m=0.7230 और m'=0.4134 का सुझाव दिया है जो बैंड के उपयोगी हिस्से पर 2% से कम के प्रतिबाधा का विचलन देते हैं। चूंकि mm'=0.3, इस खंड में m- क्षेत्र के m=0.6 की तुलना में बहुत तेज कट-ऑफ भी होगा जो प्रतिबाधा मिलान का एक विकल्प है।

m-व्युत्पत्ति प्रक्रिया को बार-बार जारी रखना और  mm 'm''- क्षेत्र आदि का उत्पादन करना संभव है। हालांकि, प्रत्येक पुनरावृत्ति पर प्राप्त सुधार कम हो जाते हैं और आमतौर पर जटिलता में वृद्धि के लायक नहीं होते हैं।


बॉड का फिल्टर

लो-पास फिल्टर के रूप में बोडे के फिल्टर का एक अवतार।

m- क्षेत्र फिल्टर में एक और भिन्नता हेंड्रिक बोडे द्वारा वर्णित की गई थी। यह फ़िल्टर एक प्रोटोटाइप के रूप में एक मध्य-श्रृंखला एम-व्युत्पन्न फ़िल्टर का उपयोग करता है और इसे सेत्वित-T सांस्थिति में एक सेत्वित प्रतिरोधक के साथ बदल देता है। इस वर्ग को ज़ोबेल फिल्टर की तुलना में कट-ऑफ आवृत्ति के बहुत करीब रखने में सक्षम होने का लाभ है, जो प्रारंभ करनेवाला प्रतिरोध के कारण m के बहुत छोटे मूल्यों के साथ ठीक से काम करने में विफल होने लगता है। इसके संचालन की व्याख्या के लिए समकक्ष प्रतिबाधा रूपांतरण देखें।[9]


ज़ोबेल नेटवर्क

ज़ोबेल नेटवर्क फिल्टर की विशिष्ट विशेषता यह है कि उनके पास एक निरंतर प्रतिरोध छवि प्रतिबाधा है और इस कारण के लिए निरंतर प्रतिरोध नेटवर्क के रूप में भी जाना जाता है। स्पष्ट रूप से, ज़ोबेल नेटवर्क फिल्टर को इसकी समाप्ति से मेल खाने में कोई समस्या नहीं है और यह इसका मुख्य लाभ है। हालांकि, अन्य फिल्टर क्षेत्रों में स्टेपर ट्रांसफर फंक्शन और शार्प कट-ऑफ होते हैं। अनुप्रयोगों को फिल्टर करने में, ज़ोबेल नेटवर्क की मुख्य भूमिका समकरण फ़िल्टर के रूप में है। ज़ोबेल नेटवर्क अन्य छवि फिल्टर से एक अलग समूह में हैं। स्थिरांक प्रतिरोध का मतलब है कि जब अन्य छवि फिल्टर वर्गों के साथ संयोजन में उपयोग किया जाता है तो मिलानकी एक ही समस्या अंत समाप्ति के साथ उत्पन्न होती है। ज़ोबेल नेटवर्क अन्य समतुल्य छवि वर्गों की तुलना में कहीं अधिक घटकों का उपयोग करने के लिए नुकसान भी होता है।


समापन सीमा का प्रभाव

फिल्टर डिजाइन की छवि विधि का एक परिणाम यह है कि समापन सीमा के प्रभाव की गणना अलग से की जानी चाहिए यदि प्रतिक्रिया पर इसके प्रभाव को ध्यान में रखा जाए। उस पूर्वानुमानित प्रतिक्रिया का सबसे गंभीर विचलन कट-ऑफ के करीब पास पासबैंड में होता है। इसकी कारण दोहरी है। पासबैंड में आगे, प्रतिबाधा मिलान धीरे-धीरे सुधरता है, इस क्षेत्र त्रुटि को सीमित करता है। दूसरी ओर, स्टॉपबैंड में लहरें बेमेल होने के कारण समापन सीमा से परावर्तित होती हैं, लेकिन फिल्टर स्टॉपबैंड की अस्वीकृति से दो बार आ जाती हैं। इसलिए स्टॉपबैंड प्रतिबाधा बेमेल गंभीर हो सकता है, इसका फ़िल्टर प्रतिक्रिया पर केवल सीमित प्रभाव पड़ता है।


कैस्केडिंग वर्ग

मिश्रित फ़िल्टर बनाने के लिए कई L आधे-खंडों को कैस्केड किया जा सकता है। समग्र छवि फ़िल्टर का निर्माण करते समय सबसे महत्वपूर्ण नियम यह है कि छवि प्रतिबाधा को हमेशा एक समान प्रतिबाधा का सामना करना चाहिए; हमेशा की तरह सामना करना चाहिए। T वर्ग को हमेशा T वर्ग का सामना करना चाहिए, वर्ग को हमेशा वर्ग का सामना करना चाहिए, k- क्षेत्र को हमेशा k- क्षेत्र (या m- क्षेत्र का साइड जिसमें k- क्षेत्र प्रतिबाधा होता है) और m- क्षेत्र को हमेशा m- क्षेत्र का सामना करना चाहिए। इसके अलावा, m के विभिन्न मूल्यों के m- क्षेत्र प्रतिबाधा एक दूसरे का सामना नहीं कर सकते हैं। और न ही किसी भी क्षेत्र के वर्ग जिनमें कट-ऑफ आवृत्ति के विभिन्न मान हों।

फिल्टर के प्रारंभ और अंत में वर्गों को अक्सर उनके प्रतिबाधा मिलान के लिए उनकी आवृत्ति प्रतिक्रिया के आकार के बजाय अंत तक चुना जाता है। इस उद्देश्य के लिए, m = 0.6 के m- क्षेत्र वर्ग सबसे आम विकल्प हैं।[10] एक विकल्प m=0.7230 और m=0.4134 के mm' क्षेत्र के वर्गों है, हालांकि इस क्षेत्र के वर्ग का शायद ही कभी उपयोग किया जाता है। जबकि इसके नीचे कई फायदे हैं, इसमें अधिक जटिल होने के नुकसान हैं और साथ ही, यदि फिल्टर के शरीर में स्थिर k वर्गों की आवश्यकता होती है, तो यह आवश्यक होता है कि m- क्षेत्र वर्गों को k- क्षेत्र से अंतरापृष्ठ करने के लिए सम्मिलित किया जाए।[11]

फिल्टर के आंतरिक भागों को सबसे आम तौर पर स्थिर k के रूप में चुना जाता है क्योंकि ये सबसे बड़े स्टॉपबैंड संकीर्णता का उत्पादन करते हैं। हालांकि, एक या दो m- क्षेत्र वर्गों को भी सम्मिलित किया जा सकता है ताकि गिरावट की दर में सुधार किया जा सके।  इस उद्देश्य के लिए उपयोग किए जाने वाले m- क्षेत्रों के लिए m का निम्न मान चुना जाता है। m का मान जितना कम होगा, उतना ही तेजी से पारगमन, जबकि एक ही समय में, स्टॉपबैंड संकीर्णन कम हो जाता है, अतिरिक्त k- क्षेत्र के वर्गों का उपयोग करने की आवश्यकता भी बढ़ जाती है। प्रतिबाधा मिलान के लिए mm- क्षेत्र का उपयोग करने का एक लाभ यह है कि इस प्रकार के अंत वर्गों में एक तेजी से पारगमन होगा (बहुत अधिक m=0.6 m- क्षेत्र ) क्योंकि mm=0.3 प्रतिबाधा मिलान के लिए। इसलिए इसे करने के लिए फिल्टर के शरीर में वर्गों की आवश्यकता को दूर किया जा सकता है।

ब्लॉक आरेख रूप में समग्र छवि फ़िल्टर का विशिष्ट उदाहरण। छवि प्रतिबाधा और वे कैसे मेल खाते हैं, दिखाए जाते हैं।
उपरोक्त फ़िल्टर को सीढ़ी कम-पास फ़िल्टर के रूप में महसूस किया गया। घटक मान एल और सी के संदर्भ में दिए गए हैं, एक स्थिर k अर्ध-खंड के घटक मान।
श्रृंखला या समानांतर में जहां उपयुक्त हो, घटकों को मिलाकर एक ही फ़िल्टर को न्यूनतम किया जाता है।

फिल्टर के शरीर में m- क्षेत्र का उपयोग करने का एक और कारण स्टॉपबैंड में एक अतिरिक्त पोल लगाना है। ध्रुव की आवृत्ति सीधे एम के मूल्य पर निर्भर करती है, एम का मान जितना छोटा होता है, पोल की आवृत्ति के करीब होती है। इसके विपरीत, m का एक बड़ा मूल्य पोल को कट-ऑफ से आगे और दूर रखता है, जब तक कि सीमा में जब m =1 ध्रुव अनंत पर होता है और प्रतिक्रिया k- क्षेत्र वर्ग के समान होती है। यदि इस पोल के लिए एम का मान चुना जाता है जो अंत वर्गों के पोल से अलग होता है तो इसका प्रभाव कट-ऑफ आवृत्ति के निकट गुड-स्टॉपबैंड अस्वीकृति के बैंड को व्यापक बनाने का होगा। इस तरह से m- क्षेत्र के खंड कट-ऑफ के पास अच्छे स्टॉपबैंड को अस्वीकार करने के लिए सेवा करते हैं और के- क्षेत्र के वर्ग अच्छे स्टॉपबैंड को खारिज कर देते हैं। वैकल्पिक रूप से, m- क्षेत्र वर्गों का उपयोग फिल्टर के शरीर में m के विभिन्न मूल्यों के साथ किया जा सकता है यदि अंतिम वर्गों में पाया गया मूल्य अनुपयुक्त है। यहाँ फिर से, mm ' क्षेत्र के कुछ लाभ होंगे यदि प्रतिबाधा मिलानके लिए उपयोग किया जाता है। प्रतिबाधा मिलानके लिए प्रयोग किया जाने वाला  mm ' क्षेत्र, ध्रुव को m=0.3 पर रखता है। हालांकि, प्रतिबाधा मिलान वर्ग के अन्य आधे भाग को m=0.723 का m- क्षेत्र होना चाहिए।[8] यह स्वचालित रूप से स्टॉपबैंड अस्वीकृति का एक अच्छा प्रसार देता है और  पारगमन के मुद्दे की स्थिरता के साथ, mm ' क्षेत्र के वर्गों का उपयोग शरीर में अतिरिक्त m- क्षेत्र वर्गों की आवश्यकता को हटा सकता है।

पासबैंड प्रतिक्रिया की समतलता में सुधार के लिए, यदि संचरण लाइन पर फिल्टर का उपयोग किया जा रहा है, तो लगातार प्रतिरोध वर्गों की भी आवश्यकता हो सकती है। यह आवश्यक है क्योंकि संचरण लाइन प्रतिक्रिया आमतौर पर पूरी तरह से फ्लैट के पास कहीं भी नहीं होती है। इन वर्गों को आम तौर पर लाइन के करीब रखा जाएगा क्योंकि वे लाइन के लिए अनुमानित प्रतिबाधा प्रस्तुत करते हैं और शेष फिल्टर से लाइन के अनिश्चित प्रतिबाधा को छिपाने की प्रवृत्ति रखते हैं। निरंतर प्रतिरोध वर्गों को एक-दूसरे से मिलाने में कोई समस्या नहीं है, भले ही वर्ग पूरी तरह से अलग आवृत्ति बैंड पर काम कर रहे हों। सभी वर्गों को एक निश्चित प्रतिरोध के ठीक समान छवि प्रतिबाधा के लिए बनाया जा सकता है।

यह भी देखें

छवि फ़िल्टर प्रकार

  • लगातार कश्मीर फिल्टर
  • एम-व्युत्पन्न फिल्टर
  • सामान्य एमएन- क्षेत्र छवि फिल्टर|सामान्य एमn-टाइप इमेज फिल्टर
  • mm'-टाइप फिल्टर
  • ज़ोबेल नेटवर्क
  • जाली फिल्टर

डिजाइन अवधारणाएं

  • छवि प्रतिबाधा
  • प्रोटोटाइप फिल्टर
  • कॉइल लोड हो रहा है

लोग

  • ओटो ज़ोबेल
  • जॉर्ज एशले कैम्पबेल
  • जॉन रेनशॉ कार्सन
  • ओलिवर हीविसाइड

संदर्भ

  1. Carson (1926).
  2. Campbell, 1922.
  3. Zobel (1923).
  4. Bray, p.62.
  5. White, (2000).
  6. Lee, p.825,
    Laplante, p.341.
  7. Matthaei et al., pp.68-72.
  8. 8.0 8.1 Zobel, 1932 (patent), p.5.
  9. Bode, 1933 (patent).
  10. Matthaei et al., p.72.
  11. Mole, p.91.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • रैखिक फिल्टर
  • मूर्ति प्रोद्योगिकी
  • करणीय
  • खास समय
  • सिग्नल (इलेक्ट्रॉनिक्स)
  • लगातार कश्मीर फिल्टर
  • चरण विलंब
  • एम-व्युत्पन्न फ़िल्टर
  • स्थानांतरण क्षेत्र्य
  • बहुपदीय फलन
  • लो पास फिल्टर
  • अंतःप्रतीक हस्तक्षेप
  • फ़िल्टर (प्रकाशिकी)
  • युग्मित उपकरण को चार्ज करें
  • गांठदार तत्व
  • पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र
  • लोहा
  • परमाणु घड़ी
  • फुरियर रूपांतरण
  • लहर (फ़िल्टर)
  • कार्तीय समन्वय प्रणाली
  • अंक शास्त्र
  • यूक्लिडियन स्पेस
  • मामला
  • ब्रम्हांड
  • कद
  • द्वि-आयामी अंतरिक्ष
  • निर्देशांक तरीका
  • अदिश (गणित)
  • शास्त्रीय हैमिल्टनियन quaternions
  • quaternions
  • पार उत्पाद
  • उत्पत्ति (गणित)
  • दो प्रतिच्छेद रेखाएँ
  • तिरछी रेखाएं
  • समानांतर पंक्ति
  • रेखीय समीकरण
  • समानांतर चतुर्भुज
  • वृत्त
  • शंकु खंड
  • विकृति (गणित)
  • निर्देशांक वेक्टर
  • लीनियर अलजेब्रा
  • सीधा
  • भौतिक विज्ञान
  • लेट बीजगणित
  • एक क्षेत्र पर बीजगणित
  • जोड़नेवाला
  • समाकृतिकता
  • कार्तीय गुणन
  • अंदरूनी प्रोडक्ट
  • आइंस्टीन योग सम्मेलन
  • इकाई वेक्टर
  • टुकड़े-टुकड़े चिकना
  • द्विभाजित
  • आंशिक व्युत्पन्न
  • आयतन तत्व
  • समारोह (गणित)
  • रेखा समाकलन का मौलिक प्रमेय
  • खंड अनुसार
  • सौम्य सतह
  • फ़ानो विमान
  • प्रक्षेप्य स्थान
  • प्रक्षेप्य ज्यामिति
  • चार आयामी अंतरिक्ष
  • विद्युत प्रवाह
  • उच्च लाभ एंटीना
  • सर्वदिशात्मक एंटीना
  • गामा किरणें
  • विद्युत संकेत
  • वाहक लहर
  • आयाम अधिमिश्रण
  • चैनल क्षमता
  • आर्थिक अच्छा
  • आधार - सामग्री संकोचन
  • शोर उन्मुक्ति
  • कॉल चिह्न
  • शिशु की देखरेख करने वाला
  • आईएसएम बैंड
  • लंबी लहर
  • एफएम प्रसारण
  • सत्य के प्रति निष्ठा
  • जमीनी लहर
  • कम आवृत्ति
  • श्रव्य विकृति
  • वह-एएसी
  • एमपीईजी-4
  • संशोधित असतत कोसाइन परिवर्तन
  • भू-स्थिर
  • प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
  • माध्यमिक आवृत्ति
  • परमाणु घड़ी
  • बीपीसी (समय संकेत)
  • फुल डुप्लेक्स
  • बिट प्रति सेकंड
  • पहला प्रतिसादकर्ता
  • हवाई गलियारा
  • नागरिक बंद
  • विविधता स्वागत
  • शून्य (रेडियो)
  • बिजली का मीटर
  • जमीन (बिजली)
  • हवाई अड्डे की निगरानी रडार
  • altimeter
  • समुद्री रडार
  • देशान्तर
  • तोपखाने का खोल
  • बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
  • अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
  • संरक्षण जीवविज्ञान
  • हवाई आलोक चित्र विद्या
  • गैराज का दरवाज़ा
  • मुख्य जेब
  • अंतरिक्ष-विज्ञान
  • ध्वनि-विज्ञान
  • निरंतर संकेत
  • मिड-रेंज स्पीकर
  • फ़िल्टर (सिग्नल प्रोसेसिंग)
  • उष्ण ऊर्जा
  • विद्युतीय प्रतिरोध
  • लंबी लाइन (दूरसंचार)
  • इलास्टेंस
  • गूंज
  • ध्वनिक प्रतिध्वनि
  • प्रत्यावर्ती धारा
  • आवृत्ति विभाजन बहुसंकेतन
  • छवि फ़िल्टर
  • वाहक लहर
  • ऊष्मा समीकरण
  • प्रतिक दर
  • विद्युत चालकता
  • आवृति का उतार - चढ़ाव
  • निरंतर कश्मीर फिल्टर
  • जटिल विमान
  • फासर (साइन वेव्स)
  • पोर्ट (सर्किट सिद्धांत)
  • लग्रांगियन यांत्रिकी
  • जाल विश्लेषण
  • पॉइसन इंटीग्रल
  • affine परिवर्तन
  • तर्कसंगत कार्य
  • शोर अनुपात का संकेत
  • मिलानफ़िल्टर
  • रैखिक-द्विघात-गाऊसी नियंत्रण
  • राज्य स्थान (नियंत्रण)
  • ऑपरेशनल एंप्लीफायर
  • एलटीआई प्रणाली सिद्धांत
  • विशिष्ट एकीकृत परिपथ आवेदन
  • सतत समय
  • एंटी - एलियासिंग फ़िल्टर
  • भाजक
  • निश्चित बिंदु अंकगणित
  • फ्लोटिंग-पॉइंट अंकगणित
  • डिजिटल बाइकैड फ़िल्टर
  • अनुकूली फिल्टर
  • अध्यारोपण सिद्धांत
  • कदम की प्रतिक्रिया
  • राज्य स्थान (नियंत्रण)
  • नियंत्रण प्रणाली
  • वोल्टेज नियंत्रित थरथरानवाला
  • कंपंडोर
  • नमूना और पकड़
  • संगणक
  • अनेक संभावनाओं में से चुनी हूई प्रक्रिया
  • प्रायिकता वितरण
  • वर्तमान परिपथ
  • गूंज रद्दीकरण
  • सुविधा निकासी
  • छवि उन्नीतकरण
  • एक क्षेत्र की प्रोग्रामिंग की पर्त
  • ओ एस आई मॉडल
  • समानता (संचार)
  • आंकड़ा अधिग्रहण
  • रूपांतरण सिद्धांत
  • लीनियर अलजेब्रा
  • स्टचास्तिक प्रोसेसेज़
  • संभावना
  • गैर-स्थानीय साधन
  • घटना (सिंक्रनाइज़ेशन आदिम)
  • एंटीलोक ब्रेक
  • उद्यम प्रणाली
  • सुरक्षा-महत्वपूर्ण प्रणाली
  • डेटा सामान्य
  • आर टी -11
  • डंब टर्मिनल
  • समय बताना
  • सेब II
  • जल्द से जल्द समय सीमा पहले शेड्यूलिंग
  • अनुकूली विभाजन अनुसूचक
  • वीडियो गेम कंसोल की चौथी पीढ़ी
  • वीडियो गेम कंसोल की तीसरी पीढ़ी
  • नमूनाकरण दर
  • अंकगणित औसत
  • उच्च प्रदर्शन कंप्यूटिंग
  • भयावह विफलता
  • हुड विधि
  • प्रणाली विश्लेषण
  • समय अपरिवर्तनीय
  • औद्योगिक नियंत्रण प्रणाली
  • निर्देशयोग्य तर्क नियंत्रक
  • प्रक्रिया अभियंता)
  • नियंत्रण पाश
  • संयंत्र (नियंत्रण सिद्धांत)
  • क्रूज नियंत्रण
  • अनुक्रमिक कार्य चार्ट
  • नकारात्मक प्रतिपुष्टि
  • अन्देंप्त
  • नियंत्रण वॉल्व
  • पीआईडी ​​नियंत्रक
  • यौगिक
  • फिल्टर (सिग्नल प्रोसेसिंग)
  • वितरित कोटा पद्धति
  • महाकाव्यों
  • डूप गति नियंत्रण
  • हवाई जहाज
  • संक्षिप्त और प्रारंभिकवाद
  • मोटर गाड़ी
  • संयुक्त राज्य नौसेना
  • निर्देशित मिसाइलें
  • भूभाग-निम्नलिखित रडार
  • अवरक्त किरणे
  • प्रेसिजन-निर्देशित युद्धपोत
  • विमान भेदी युद्ध
  • शाही रूसी नौसेना
  • हस्तक्षेप हरा
  • सेंट पीटर्सबर्ग
  • योण क्षेत्र
  • आकाशीय बिजली
  • द्वितीय विश्वयुद्ध
  • संयुक्त राज्य सेना
  • डेथ रे
  • पर्ल हार्बर पर हमला
  • ओबाउ (नेविगेशन)
  • जमीन नियंत्रित दृष्टिकोण
  • भूविज्ञानी
  • आंधी तूफान
  • मौसम पूर्वानुमान
  • बहुत बुरा मौसम
  • सर्दियों का तूफान
  • संकेत पहचान
  • बिखरने
  • इलेक्ट्रिकल कंडक्टीविटी
  • पराबैगनी प्रकाश
  • खालीपन
  • भूसा (प्रतिमाप)
  • पारद्युतिक स्थिरांक
  • विद्युत चुम्बकीय विकिरण
  • विद्युतीय प्रतिरोध
  • प्रतिचुम्बकत्व
  • बहुपथ प्रसार
  • तरंग दैर्ध्य
  • अर्ध-सक्रिय रडार होमिंग
  • Nyquist आवृत्ति
  • ध्रुवीकरण (लहरें)
  • अपवर्तक सूचकांक
  • नाड़ी पुनरावृत्ति आवृत्ति
  • शोर मचाने वाला फ़र्श
  • प्रकाश गूंज
  • रेत का तूफान
  • स्वत: नियंत्रण प्राप्त करें
  • जय स्पाइक
  • घबराना
  • आयनमंडलीय परावर्तन
  • वायुमंडलीय वाहिनी
  • व्युत्क्रम वर्ग नियम
  • इलेक्ट्रानिक युद्ध
  • उड़ान का समय
  • प्रकाश कि गति
  • पूर्व चेतावनी रडार
  • रफ़्तार
  • निरंतर-लहर रडार
  • स्पेकट्रूम विशेष्यग्य
  • रेंज अस्पष्टता संकल्प
  • मिलानफ़िल्टर
  • रोटेशन
  • चरणबद्ध व्यूह रचना
  • मैमथ राडार
  • निगरानी करना
  • स्क्रीन
  • पतला सरणी अभिशाप
  • हवाई रडार प्रणाली
  • परिमाणक्रम
  • इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
  • क्षितिज राडार के ऊपर
  • पल्स बनाने वाला नेटवर्क
  • अमेरिका में प्रदूषण की रोकथाम
  • आईटी रेडियो विनियम
  • रडार संकेत विशेषताएं
  • हैस (रडार)
  • एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
  • समय की इकाई
  • गुणात्मक प्रतिलोम
  • रोशनी
  • दिल की आवाज
  • हिलाना
  • सरल आवर्त गति
  • नहीं (पत्र)
  • एसआई व्युत्पन्न इकाई
  • इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
  • प्रति मिनट धूर्णन
  • हवा की लहर
  • एक समारोह का तर्क
  • चरण (लहरें)
  • आयामहीन मात्रा
  • असतत समय संकेत
  • विशेष मामला
  • मध्यम (प्रकाशिकी)
  • कोई भी त्रुटि
  • ध्वनि की तरंग
  • दृश्यमान प्रतिबिम्ब
  • लय
  • सुनवाई की दहलीज
  • प्रजातियाँ
  • मुख्य विधुत
  • नाबालिग तीसरा
  • माप की इकाइयां
  • आवधिकता (बहुविकल्पी)
  • परिमाण के आदेश (आवृत्ति)
  • वर्णक्रमीय घटक
  • रैखिक समय-अपरिवर्तनीय प्रणाली
  • असतत समय फिल्टर
  • ऑटोरेग्रेसिव मॉडल
  • डिजिटल डाटा
  • डिजिटल देरी लाइन
  • बीआईबीओ स्थिरता
  • फोरियर श्रेणी
  • दोषी
  • दशमलव (सिग्नल प्रोसेसिंग)
  • असतत फूरियर रूपांतरण
  • एफआईआर ट्रांसफर फंक्शन
  • 3डी परीक्षण मॉडल
  • ब्लेंडर (सॉफ्टवेयर)
  • वैज्ञानिक दृश्य
  • प्रतिपादन (कंप्यूटर ग्राफिक्स)
  • विज्ञापन देना
  • चलचित्र
  • अनुभूति
  • निहित सतह
  • विमानन
  • भूतपूर्व छात्र
  • छिपी सतह निर्धारण
  • अंतरिक्ष आक्रमणकारी
  • लकीर खींचने की क्रिया
  • एनएमओएस तर्क
  • उच्च संकल्प
  • एमओएस मेमोरी
  • पूरक राज्य मंत्री
  • नक्षत्र-भवन
  • वैश्विक चमक
  • मैकिंटोश कंप्यूटर
  • प्रथम व्यक्ति शूटर
  • साधारण मानचित्रण
  • हिमयुग (2002 फ़िल्म)
  • मेडागास्कर (2005 फ़िल्म)
  • बायोइनफॉरमैटिक्स
  • शारीरिक रूप से आधारित प्रतिपादन
  • हीरे की थाली
  • प्रतिबिंब (कंप्यूटर ग्राफिक्स)
  • 2010 की एनिमेटेड फीचर फिल्मों की सूची
  • परिवेशी बाधा
  • वास्तविक समय (मीडिया)
  • जानकारी
  • कंकाल एनिमेशन
  • भीड़ अनुकरण
  • प्रक्रियात्मक एनिमेशन
  • अणु प्रणाली
  • कैमरा
  • माइक्रोस्कोप
  • इंजीनियरिंग के चित्र
  • रेखापुंज छवि
  • नक्शा
  • हार्डवेयर एक्सिलरेशन
  • अंधेरा
  • गैर-समान तर्कसंगत बी-तख़्ता
  • नक्शा टक्कर
  • चुम्बकीय अनुनाद इमेजिंग
  • नमूनाकरण (सिग्नल प्रोसेसिंग)
  • sculpting
  • आधुनिक कला का संग्रहालय
  • गेम डेवलपर्स कांफ्रेंस
  • शैक्षिक
  • आपूर्ती बंद करने की आवृत्ति
  • प्रतिक्रिया (इलेक्ट्रॉनिक्स)
  • अण्डाकार फिल्टर
  • सीरिज़ सर्किट)
  • मिलानजेड-ट्रांसफॉर्म विधि
  • कंघी फ़िल्टर
  • समूह देरी
  • सप्टक
  • दूसरों से अलग
  • लो पास फिल्टर
  • निर्देश प्रति सेकंड
  • अंकगणित अतिप्रवाह
  • चरण (लहरें)
  • हस्तक्षेप (लहर प्रसार)
  • बीट (ध्वनिक)
  • अण्डाकार तर्कसंगत कार्य
  • जैकोबी अण्डाकार कार्य
  • क्यू कारक
  • यूनिट सर्कल
  • फी (पत्र)
  • सुनहरा अनुपात
  • मोनोटोनिक
  • Immittance
  • ऑप एंप
  • आवेग invariance
  • बेसेल फ़ंक्शन
  • जटिल सन्युग्म
  • संकेत प्रतिबिंब
  • विद्युतीय ऊर्जा
  • इनपुट उपस्थिति
  • एकदिश धारा
  • जटिल संख्या
  • भार प्रतिबाधा
  • विद्युतचुंबकीय व्यवधान
  • बिजली की आपूर्ति
  • आम-कैथोड
  • अवमन्दन कारक
  • ध्वनिरोधन
  • गूंज (घटना)
  • फ्रेस्नेल समीकरण
  • रोड़ी
  • लोडिंग कॉइल
  • आर एस होयतो
  • लोड हो रहा है कॉइल

ग्रन्थसूची

  • Campbell, G A, "Physical theory of the electric wave-filter", Bell System Tech J, November 1922, vol 1, no 2, pp 1–32.
  • Bode, Hendrik W., Wave Filter, US patent 2 002 216, filed 7 June 1933, issued 21 May 1935.
  • Bray, J, Innovation and the Communications Revolution, Institute of Electrical Engineers ISBN 0-85296-218-5.
  • Carson, J R, Electric Circuit Theory and Operational Calculus, 1926, McGraw-Hill, New York.
  • Laplante, Phillip A, Comprehensive Dictionary of Electrical Engineering, CRC Press, 2005 ISBN 0-8493-3086-6.
  • Lee, Thomas H, Planar Microwave Engineering: a Practical Guide to Theory, Measurement, and Circuits, Cambridge University Press, 2004 ISBN 0-521-83526-7.
  • Matthaei, Young, Jones Microwave Filters, Impedance-Matching Networks, and Coupling Structures McGraw-Hill 1964
  • Mole, J H, Filter Design Data for Communication Engineers, London: E & F N Spon Ltd.,1952 OCLC 247417663.
  • White, G, "The Past", Journal BT Technology, Vol 18, No 1, pp. 107–132, January 2000, Springer Netherlands.
  • Zobel, O J,"Theory and design of uniform and composite electric wave filters", Bell System Technical Journal, vol.2 (1923), pp. 1–46.
  • Zobel, O J, Electrical wave filters, US patent 1 850 146, filed 25 November 1930, issued 22 March 1932.
  • Redifon Radio Diary, 1970, pp. 45–48, William Collins Sons & Co, 1969.