कक्षीय राशियाँ

From Vigyanwiki
Revision as of 00:05, 5 December 2022 by alpha>Abhishekk (Work done)

कक्षीय राशियाँ विशिष्ट कक्षा की विशिष्ट रूप से व्यष्टित्व या पहचान करने के लिए आवश्यक मापदंड हैं। खगोलीय यांत्रिकी में इन राशियों को केप्लर कक्षा का उपयोग करके दो-पिंड प्रणालियों में सुविवेचित किया जाता है। गणितीय रूप से एक ही कक्षा का वर्णन करने के कई अलग-अलग तरीके हैं, परन्तु कुछ योजनाएं, जिनमें से प्रत्येक में छह मापदंड का एक समुच्चय होता है, सामान्यतः खगोल विज्ञान और कक्षीय यांत्रिकी में उपयोग किया जाता है।

एक वास्तविक कक्षा और इसकी राशियाँ समय के साथ अन्य वस्तुओं द्वारा गुरुत्वाकर्षण प्रक्षोभ और सामान्य सापेक्षता के प्रभावों के कारण परिवर्तित होते हैं। केपलर कक्षा एक विशेष समय पर कक्षा का आदर्शीकृत, गणितीय सन्निकटन है।

केप्लरियन राशियाँ

इस चित्र में, कक्षीय तल (पीला) एक संदर्भ तल (ग्रे) को काटता है। पृथ्वी-परिक्रमा करने वाले उपग्रहों के लिए, संदर्भ तल आमतौर पर पृथ्वी का विषुवतीय तल होता है, और सौर कक्षाओं में उपग्रहों के लिए यह ग्रहण तल होता है। प्रतिच्छेदन को नोड्स की रेखा कहा जाता है, क्योंकि यह द्रव्यमान के केंद्र को आरोही और अवरोही नोड्स से जोड़ता है। सन्दर्भ तल, वर्नल बिंदु (♈︎) के साथ मिलकर एक निर्देश तंत्र स्थापित करता है।

जोहान्स केप्लर और ग्रहों की गति के उनके नियमों के पश्चात, पौराणिक कक्षीय राशियाँ छह केप्लरियन राशियाँ हैं।

जब एक जड़त्वीय तंत्र से प्रेक्षित किया जाता है, तो दो परिक्रमा करने वाले पिंड अलग-अलग प्रक्षेप वक्रों का पता लगाते हैं। इन प्रक्षेप वक्रों में से प्रत्येक का सकेंद्र सामान्य द्रव्यमान केंद्र पर केंद्रित होता है। जब किसी एक पिंड पर केंद्रित गैर-जड़त्वीय तंत्र से प्रेक्षित किया जाता है, तो केवल विपरीत पिंड का प्रक्षेप वक्र स्पष्ट होता है; केप्लरियन राशियाँ इन गैर-जड़त्वीय प्रक्षेप वक्र का वर्णन करते हैं। एक कक्षा में केप्लरियन राशियों के दो समुच्चय होते हैं जो इस बात पर निर्भर करता है कि किस पिंड को संदर्भ बिंदु के रूप में उपयोग किया जाता है। संदर्भ पिंड (सामान्यतः सबसे बड़े पैमाने पर) को प्राथमिक कहा जाता है, अन्य पिंड को द्वितीयक कहा जाता है। जरूरी नहीं कि प्राथमिक में माध्यमिक की तुलना में अधिक द्रव्यमान हो, और यहां तक कि जब पिंड समान द्रव्यमान के होते हैं, कक्षीय राशियाँ प्राथमिक के विकल्प पर निर्भर करते हैं।

दीर्घवृत्त के आकृति और आकार को परिभाषित करने वाली दो राशियाँ निम्नलिखित है:

  • उत्केन्द्रता (e) - दीर्घवृत्त की आकृति, यह वर्णन करता है कि यह एक वृत्त की तुलना में कितना लम्बा है (चित्र में चिह्नित नहीं है)।
  • अर्ध दीर्घ अक्ष (a) - पेरीएप्सिस और एपोप्सिस दूरी का योग दो से विभाजित होता है। उत्कृष्ट दो-पिंड कक्षाओं के लिए, अर्ध दीर्घ अक्ष पिंडों के केंद्रों के बीच की दूरी है, द्रव्यमान के केंद्र से पिंडों की दूरी नहीं।

दो राशियाँ उस कक्षीय तल के उन्मुखीकरण को परिभाषित करते हैं जिसमें दीर्घवृत्त सन्निहित है:

  • आनति (i) - संदर्भ तल के संबंध में दीर्घवृत्त का लंबवत आनति, आरोही नोड पर मापा जाता है (जहां कक्षा संदर्भ तल के माध्यम से ऊपर की ओर गुजरती है, आरेख में हरे रंग का कोण i)। आनति कोण को कक्षीय तल और संदर्भ तल के बीच प्रतिच्छेदन रेखा के लम्बवत् मापा जाता है। एक दीर्घवृत्त पर कोई भी तीन बिंदु दीर्घवृत्त कक्षीय तल को परिभाषित करेगा। तल और दीर्घवृत्त दोनों ही त्रि-विमीय अंतरिक्ष में परिभाषित द्वि-विमीय वस्तुएँ हैं।
  • आरोही नोड का देशांतर (Ω) - संदर्भ तंत्र के वसंत बिंदु (♈︎ द्वारा प्रतीक) के संबंध में दीर्घवृत्त के आरोही नोड (जहां कक्षा संदर्भ तल के माध्यम से ऊपर की ओर गुजरती है, द्वारा चिन्हित) को क्षैतिज रूप से ओरिएंट करता है। यह संदर्भ तल में मापा जाता है, और आरेख में हरे कोण Ω के रूप में दिखाया गया है।

शेष दो राशियाँ इस प्रकार हैं:

  • पेरीपसिस का तर्क (ω) कक्षीय तल में दीर्घवृत्तीय के उन्मुखीकरण को परिभाषित करता है, आरोही नोड से पेरीपसिस (उपग्रह वस्तु जिस प्राथमिक वस्तु के चारों ओर परिक्रमा करती है, उसके निकटतम बिंदु, आरेख में नीला कोण ω) तक मापा कोण के रूप में।
  • वास्तविक विसंगति (ν, θ, या f) निर्देशक्षण (t0) पर एक विशिष्ट समय ("निर्देशक्षण") पर दीर्घवृत्त के साथ परिक्रमा करने वाले पिंड की स्थिति को परिभाषित करता है।

औसत विसंगति M गणितीय रूप से सुविधाजनक निर्देशक्षण्पनिक "कोण" है जो समय के साथ रैखिक रूप से परिवर्तित होता है, परन्तु जो वास्तविक ज्यामितीय कोण के अनुरूप नहीं है। इसे सही विसंगति ν में परिवर्तित किया जा सकता है, जो दीर्घवृत्त के तल में वास्तविक ज्यामितीय कोण का प्रतिनिधित्व करता है, पेरीप्सिस (केंद्रीय पिंड के निकटतम दृष्टिकोण) और किसी भी समय परिक्रमा करने वाली वस्तु की स्थिति के बीच। इस प्रकार, वास्तविक विसंगति को चित्र में लाल कोण ν के रूप में दिखाया गया है, और औसत विसंगति नहीं दिखाई गई है।

आनति के कोण, आरोही नोड के देशांतर, और पेरीपसिस के तर्क को संदर्भ समन्वय प्रणाली से संबंधित कक्षा के अभिविन्यास को परिभाषित करने वाले यूलर कोणों के रूप में भी वर्णित किया जा सकता है।

ध्यान दें कि गैर-दीर्घवृत्तीय प्रक्षेप वक्र भी उपस्थित हैं, परन्तु संवृत नहीं हैं, और इस प्रकार कक्षा नहीं हैं। यदि उत्केन्द्रता एक से अधिक है, तो प्रक्षेप वक्र एक अतिपरवलय है। यदि उत्केन्द्रता एक के बराबर है और कोणीय गति शून्य है, तो प्रक्षेप वक्र रेडियल है। यदि उत्केन्द्रता एक है और कोणीय गति है, तो प्रक्षेप वक्र एक परवलय है।

आवश्यक मापदंड (पैरामीटर)

जड़त्वीय निर्देश तंत्र और यादृच्छिक निर्देशक्षण (समय में एक निर्दिष्ट बिंदु) को प्रेक्षित किया जाता है, स्पष्ट रूप से एक यादृच्छिक और अविक्षुब्ध कक्षा को परिभाषित करने के लिए ठीक छह मापदंडों की आवश्यकता होती है।

ऐसा इसलिए है क्योंकि समस्या में छह स्वतंत्रता की कोटि सम्मिलित हैं। ये तीन स्थानिक विमाओं के अनुरूप हैं जो स्थिति (x, y, z कार्तीय निर्देशांक प्रणाली में) को परिभाषित करते हैं, साथ ही इनमें से प्रत्येक आयाम में वेग। इन्हें कक्षीय अवस्था सदिश के रूप में वर्णित किया जा सकता है, परन्तु यह प्रायः कक्षा का प्रतिनिधित्व करने का एक असुविधाजनक तरीका होता है, यही कारण है कि इसके बजाय केप्लरियन राशियों का सामान्यतः उपयोग किया जाता है।

कभी-कभी संदर्भ तंत्र के अंश के बजाय निर्देशक्षण को "सातवें" कक्षीय मापदंड माना जाता है।

यदि निर्देशक्षण को उस क्षण के रूप में परिभाषित किया जाता है जब राशियों में से एक शून्य होता है, तो अनिर्दिष्ट राशियों की संख्या घटाकर पांच कर दी जाती है। (कक्षा को परिभाषित करने के लिए छठा मापदंड अभी भी आवश्यक है; यह वास्तविक-विश्व घड़ी समय के संबंध में निर्देशक्षण की परिभाषा में केवल संख्यात्मक रूप से शून्य पर समुच्चय है या "स्थानांतरित" है।)

वैकल्पिक पैरामीट्रिजेशन

केप्लरियन राशियों को कक्षीय अवस्था सदिशों (स्थिति के लिए एक त्रि-विमीय सदिश और वेग के लिए दूसरा सदिश) से मैन्युअल रूपान्तरण या कंप्यूटर सॉफ्टवेयर के द्वारा प्राप्त किया जा सकता है।[1]

अन्य कक्षीय मापदंडों की गणना केप्लरियन राशियों से की जा सकती है, जैसे कि अवधि, एपोप्सिस और पेरीपसिस। (पृथ्वी की परिक्रमा करते समय, अंतिम दो शब्दों को अपोजी और पेरिगी के रूप में जाना जाता है।) केप्लरियन राशियाँ समुच्चयों में अर्ध-प्रमुख अक्ष के बजाय अवधि को निर्दिष्ट करना साधारण है, क्योंकि प्रत्येक की गणना दूसरे से की जा सकती है, बशर्ते कि केंद्रीय पिंड के लिए मानक गुरुत्वाकर्षण मापदंड, GM द्वारा प्रदर्शित किया जाता है।

निर्देशक्षण में औसत विसंगति के बजाय, औसत विसंगति M, औसत देशांतर, वास्तविक विसंगति ν0, या (शायद ही कभी) विलक्षण विसंगति का उपयोग किया जा सकता है।

उदाहरण के लिए, "निर्देशक्षण में औसत विसंगति" के बजाय "औसत विसंगति" का उपयोग किया जाता है अर्थात समय t को सातवें कक्षीय राशियाँ के रूप में निर्दिष्ट किया जाना चाहिए। कभी-कभी यह माना जाता है कि निर्देशक्षण में औसत विसंगति शून्य है (निर्देशक्षण की उपयुक्त परिभाषा चुनकर), केवल पांच अन्य कक्षीय राशियों को निर्दिष्ट करने के लिए छोड़ दिया जाता है।

विभिन्न खगोलीय पिंडों के लिए राशियों के अलग-अलग समुच्चय का उपयोग किया जाता है। एक कक्षा के आकार और आकार को निर्दिष्ट करने के लिए उत्केन्द्रता, e, और या तो अर्ध-प्रमुख अक्ष, a, या पेराप्सिस की दूरी, q का उपयोग किया जाता है। आरोही नोड का देशांतर, Ω, आनति, i, और पेरीपसिस का तर्क, ω, या पेरीपसिस का देशांतर, ϖ, इसके तल में कक्षा के अभिविन्यास को निर्दिष्ट करता है। या तो निर्देशक्षणांतर पर देशांतर, L0, निर्देशक्षण में औसत विसंगति, M0, या पेरिहेलियन मार्ग का समय, T0, कक्षा में एक ज्ञात बिंदु को निर्दिष्ट करने के लिए उपयोग किया जाता है। किए गए विकल्प इस बात पर निर्भर करते हैं कि प्राथमिक संदर्भ के रूप में वसंत विषुव या नोड का उपयोग किया जाता है या नहीं। अर्ध-प्रमुख अक्ष ज्ञात है यदि औसत गति और गुरुत्वाकर्षण द्रव्यमान ज्ञात हैं।[2][3]

समय के संबंध में एक बहुपद फलन के रूप में, या तो M0 या L0 के बिना, सीधे तौर पर व्यक्त किए गए माध्य विसंगति (M) या माध्य देशांतर (L) को देखना भी काफी सामान्य है। अभिव्यक्ति की यह विधि गुणांक में से एक के रूप में बहुपद में माध्य गति (n) को समेकित करेगी। ऐसा प्रतीत होगा कि L या M को अधिक जटिल तरीके से व्यक्त किया गया है, परन्तु हमें एक कम कक्षीय राशियाँ की आवश्यकता होगी।

माध्य गति को कक्षीय अवधि P के उद्धरणों के पीछे भी अस्पष्ट किया जा सकता है।[clarification needed]

कक्षीय राशियों का समुच्चय
पिण्ड प्रयुक्त राशियाँ
प्रमुख ग्रह e, a, i, Ω, ϖ, L0
धूमकेतु e, q, i, Ω, ω, T0
क्षुद्रग्रह e, a, i, Ω, ω, M0
दो-लाइन राशियाँ e, i, Ω, ω, n, M0


यूलर कोण परिवर्तन

कोण Ω, i, ω यूलर कोण हैं (उस आलेख में उपयोग किए गए नोटेशन में α, β, γ के अनुरूप) समन्वय प्रणाली के उन्मुखीकरण को चिह्नित करते हैं

,ŷ, जड़त्वीय निर्देशांक तंत्र Î,Ĵ,

जहाँ:

  • Î, Ĵ केंद्रीय पिंड के भूमध्य रेखा तल में है। Î महाविषुव की दिशा में है। Ĵ, Î के लिए लंबवत है और Î के साथ संदर्भ तल को परिभाषित करता है। संदर्भ तल के लिए लंबवत है। सौर मंडल में पिंडों (ग्रहों, धूमकेतुओं, क्षुद्रग्रहों, ...) के कक्षीय राशियाँ सामान्यतः ग्रहण को उस तल के रूप में उपयोग करते हैं।
  • , ŷ कक्षीय तल में हैं और के साथ परिकेंद्र (पेरीपसिस) की दिशा में हैं। कक्षा के समतल के लंबवत है। ŷ पारस्परिक रूप से और के लंबवत है।

फिर, यूलर कोण Ω, i, ω के साथ Î,Ĵ, समन्वय तंत्र से ,ŷ, तंत्र में परिवर्तन होता है:

जहाँ

व्युत्क्रम रूपांतरण, जो x-y-z प्रणाली में 3 (या 2) निर्देशांक दिए जाने पर I-J-K प्रणाली में 3 निर्देशांकों की गणना करता है, व्युत्क्रम आव्यूह द्वारा दर्शाया जाता है। आव्यूह बीजगणित के नियमों के अनुसार, 3 घूर्णी आव्यूह के उत्पाद के व्युत्क्रम आव्यूह को तीन आव्यूह के क्रम को परिवर्तित और तीन यूलर कोणों के संकेतों को परिवर्तित से प्राप्त होता है।

,ŷ, से यूलर कोण Ω, i, ω में रूपांतरण है:

जहाँ arg(x,y) ध्रुवीय तर्क को दर्शाता है जिसे कई प्रोग्रामिंग भाषाओं में उपलब्ध मानक फलन atan2(y,x) के साथ गणना की जा सकती है।

कक्षा पूर्वाकलन

एक पूरी तरह से गोलाकार केंद्रीय पिंड और शून्य क्षोभ की आदर्श स्थितियों के अधीन, औसत विसंगति को छोड़कर सभी कक्षीय राशियाँ स्थिर हैं। औसत विसंगति समय के साथ रैखिक रूप से परिवर्तित होती है, औसत गति द्वारा बढ़ाया जाता है,[2]

इसलिए यदि किसी क्षण t0 पर कक्षीय मापदंड [e0, a0, i0, Ω0, ω0, M0] हैं, तो समय t = t0 + δt पर राशियाँ [e0, a0, i0, Ω0, ω0, M0 + n δt] द्वारा दिया जाता है

प्रक्षोभ और तात्विक विचरण

अविचलित, दो-पिंड, न्यूटोनियन कक्षाएँ सदैव शंकुधारी खंड होती हैं, इसलिए केप्लरियन राशियाँ एक दीर्घवृत्त, परवलय या अतिपरवलय को परिभाषित करते हैं। वास्तविक कक्षाओं में प्रक्षोभ होती है, इसलिए केप्लरियन राशियों का एक दिया गया समुच्चय केवल निर्देशक्षण में ही एक कक्षा का सटीक वर्णन करता है। कक्षीय राशियों का विकास प्राथमिक के अतिरिक्त अन्य पिंडों के गुरूत्वीय कर्षण, प्राथमिक की अगोलीयता, वायुमंडलीय ड्रैग, सापेक्षतावादी प्रभाव, विकिरण दबाव, विद्युत चुम्बकीय बलों, और इसी तरह के कारण होता है।

केप्लरियन राशियों का उपयोग प्रायः निर्देशक्षण के निकट उपयोगी भविष्यवाणियों के उत्पादन के लिए किया जा सकता है। वैकल्पिक रूप से, वास्तविक प्रक्षेप वक्र को केप्लरियन कक्षाओं के अनुक्रम के रूप में तैयार किया जा सकता है जो वास्तविक प्रक्षेप वक्र ("चुंबन" या स्पर्श) करते हैं। उन्हें तथाकथित ग्रहों के समीकरणों, विभेदक समीकरणों द्वारा भी वर्णित किया जा सकता है, जो लाग्रेंज, गॉस, डेलाउने, पॉइंकेयर या हिल द्वारा विकसित विभिन्न रूपों में आते हैं।

दो-लाइन राशियाँ

केप्लरियन राशियों के मापदंडों को पाठ के रूप में कई स्वरूपों में एन्कोड किया जा सकता है। उनमें से सबसे साधारण नासा / नोराड "दो-लाइन राशियाँ" (टीएलई) प्रारूप है,[4] मूल रूप से 80 कॉलम छिद्रित कार्ड के साथ उपयोग के लिए डिज़ाइन किया गया है, परन्तु अभी भी उपयोग में है क्योंकि यह सबसे साधारण प्रारूप है, और साथ ही साथ सभी आधुनिक डेटा संचयन द्वारा आसानी से नियंत्रित किया जा सकता है।

अनुप्रयोग और पिण्ड कक्षा के आधार पर, 30 दिनों से अधिक पुराने टीएलई से प्राप्त डेटा अविश्वसनीय हो सकता है। एसजीपी / एसजीपी4 / एसडीपी4 / एसजीपी8 / एसडीपी8 एल्गोरिथम के माध्यम से कक्षीय स्थितियों की गणना टीएलई से की जा सकती है।[5]

दो-लाइन राशियाँ का उदाहरण:[6]

1 27651U 03004A   07083.49636287  .00000119  00000-0  30706-4 0  2692
2 27651 039.9951 132.2059 0025931 073.4582 286.9047 14.81909376225249

डेलाउने चर

चंद्रमा की गति के अपने अध्ययन के दौरान चार्ल्स-यूजेन डेलौने द्वारा डेलौने कक्षीय राशियों का परिचय दिया गया था।[7] सामान्यतः डेलाउने चर कहा जाता है, वे विहित चर का एक समुच्चय हैं, जो क्रिया-कोण निर्देशांक हैं। कोण कुछ केप्लरियन कोणों के सरल योग हैं:

  • औसत विसंगति
  • पेरीपसिस का तर्क, और
  • आरोही नोड का देशांतर

उनके संबंधित संनिर्देशक्षण्म संवेग के साथ, L, G, और H[8] क्षण L, G, और H क्रिया चर हैं और केप्लरियन राशियों a, e, और i के अधिक विस्तृत संयोजन हैं।

डेलाउने चरों का उपयोग खगोलीय यांत्रिकी में पर्टुरबेटिव गणनाओं को सरल बनाने के लिए किया जाता है, उदाहरण के लिए श्रेणीबद्ध ट्रिपल सिस्टम में कोज़ाई-लिडोव दोलनों की जांच करते समय।[8] डेलाउने चर का लाभ यह है कि जब e और / या i बहुत छोटे होते हैं तो वे अच्छी तरह से परिभाषित और व्‍युत्‍क्रमणीय (h को छोड़कर, जिसे सहन किया जा सकता है) रहते हैं: जब परीक्षण कण की कक्षा बहुत लगभग गोलाकार (), या बहुत लगभग "समतल" () हो।

यह भी देखें

संदर्भ

  1. For example, with "VEC2TLE". amsat.org. Archived from the original on 20 May 2016. Retrieved 19 June 2013.
  2. 2.0 2.1 Green, Robin M. (1985). Spherical Astronomy. Cambridge University Press. ISBN 978-0-521-23988-2.
  3. Danby, J.M.A. (1962). Fundamentals of Celestial Mechanics. Willmann-Bell. ISBN 978-0-943396-20-0.
  4. Kelso, T.S. "अक्सर पूछे जाने वाले प्रश्न: दो-पंक्ति तत्व सेट प्रारूप". celestrak.com. CelesTrak. Archived from the original on 26 March 2016. Retrieved 15 June 2016.
  5. Seidelmann, K.P., ed. (1992). खगोलीय पंचांग के लिए व्याख्यात्मक पूरक (1st ed.). Mill Valley, CA: University Science Books.
  6. "स्रोत". Heavens-Above.com. orbit data. Archived from the original on 2007-09-27.
  7. Aubin, David (2014). "Delaunay, Charles-Eugène". Biographical Encyclopedia of Astronomers. New York, NY: Springer New York. pp. 548–549. doi:10.1007/978-1-4419-9917-7_347. ISBN 978-1-4419-9916-0.
  8. 8.0 8.1 Shevchenko, Ivan (2017). लिडोव-कोज़ाई प्रभाव: एक्सोप्लैनेट अनुसंधान और गतिशील खगोल विज्ञान में अनुप्रयोग. Cham: Springer. ISBN 978-3-319-43522-0.


बाहरी संबंध