गणित में, फूरियर उलटा प्रमेय कहता है कि कई प्रकार के कार्यों के लिए किसी फ़ंक्शन को उसके फूरियर रूपांतरण से पुनर्प्राप्त करना संभव है। सहज रूप से इसे इस कथन के रूप में देखा जा सकता है कि यदि हम तरंगों की सभी आवृत्ति#आवृत्ति_की_और चरण (तरंगों) की जानकारी एक तरंग के बारे में जानते हैं तो हम मूल तरंग का ठीक-ठीक पुनर्निर्माण कर सकते हैं।
प्रमेय कहता है कि यदि हमारे पास कोई कार्य है कुछ शर्तों को पूरा करते हैं, और हम फूरियर ट्रांसफॉर्म # अन्य सम्मेलनों का उपयोग करते हैं
फिर
दूसरे शब्दों में, प्रमेय कहता है कि
इस अंतिम समीकरण को फूरियर इंटीग्रल प्रमेय कहा जाता है।
प्रमेय को बताने का दूसरा तरीका यह है कि अगर फ्लिप ऑपरेटर है यानी , फिर
प्रमेय धारण करता है यदि दोनों और इसके फूरियर रूपांतरण पूरी तरह से अभिन्न कार्य हैं (लेबेसेग एकीकरण में) और बिंदु पर निरंतर है . हालाँकि, अधिक सामान्य परिस्थितियों में भी फूरियर व्युत्क्रम प्रमेय के संस्करण होल्ड करते हैं। इन मामलों में उपरोक्त समाकल सामान्य अर्थों में अभिसरण नहीं हो सकते हैं।
कथन
इस खंड में हम मानते हैं एक अभिन्न निरंतर कार्य है। फूरियर ट्रांसफॉर्म # सम्मेलन का प्रयोग करें
इसके अलावा, हम मानते हैं कि फूरियर रूपांतरण भी पूर्णांक है।
=== उलटा फूरियर एक अभिन्न === के रूप में बदल जाता है
फूरियर व्युत्क्रम प्रमेय का सबसे आम कथन व्युत्क्रम परिवर्तन को एक अभिन्न के रूप में बताना है। किसी भी अभिन्न कार्य के लिए और सभी समूह
फिर सभी के लिए अपने पास
फूरियर अभिन्न प्रमेय
प्रमेय के रूप में पुनर्स्थापित किया जा सकता है
यदि f वास्तविक मूल्य है तो उपरोक्त के प्रत्येक पक्ष का वास्तविक भाग लेने से हम प्राप्त करते हैं
=== फ्लिप ऑपरेटर === के संदर्भ में उलटा परिवर्तन
किसी समारोह के लिए फ्लिप ऑपरेटर को परिभाषित करें[note 1] द्वारा
तब हम इसके बजाय परिभाषित कर सकते हैं
यह फूरियर ट्रांसफॉर्म और फ्लिप ऑपरेटर की परिभाषा से तत्काल है कि दोनों तथा की अभिन्न परिभाषा से मेल खाता है , और विशेष रूप से एक दूसरे के बराबर हैं और संतुष्ट हैं .
तब से अपने पास तथा
दो तरफा उलटा
ऊपर वर्णित फूरियर व्युत्क्रम प्रमेय का रूप, जैसा कि आम है, वह है
दूसरे शब्दों में, फूरियर रूपांतरण के लिए एक बायां प्रतिलोम है। हालाँकि यह फूरियर रूपांतरण के लिए एक सही व्युत्क्रम भी है अर्थात
तब से के समान है , यह फूरियर व्युत्क्रम प्रमेय (बदलते चर) से बहुत आसानी से अनुसरण करता है ):
वैकल्पिक रूप से, इसे बीच के संबंध से देखा जा सकता है और फ्लिप ऑपरेटर और फ़ंक्शन संरचना की सहयोगीता, चूंकि
फ़ंक्शन पर शर्तें
जब भौतिकी और इंजीनियरिंग में उपयोग किया जाता है, तो फूरियर उलटा प्रमेय अक्सर इस धारणा के तहत प्रयोग किया जाता है कि सब कुछ अच्छी तरह से व्यवहार करता है। गणित में इस तरह के अनुमानी तर्कों की अनुमति नहीं है, और फूरियर व्युत्क्रम प्रमेय में एक स्पष्ट विनिर्देश शामिल है कि किस वर्ग के कार्यों की अनुमति दी जा रही है। हालांकि, फूरियर व्युत्क्रम प्रमेय के इतने सारे रूपों पर विचार करने के लिए कार्यों का कोई सर्वश्रेष्ठ वर्ग मौजूद नहीं है, यद्यपि संगत निष्कर्ष के साथ।
श्वार्ट्ज कार्य
फूरियर व्युत्क्रम प्रमेय सभी श्वार्ट्ज कार्यों के लिए मान्य है (मोटे तौर पर बोलना, सुचारू कार्य जो जल्दी से क्षय हो जाते हैं और जिनके सभी डेरिवेटिव जल्दी से क्षय हो जाते हैं)। इस स्थिति का लाभ यह है कि यह फ़ंक्शन के बारे में एक प्राथमिक प्रत्यक्ष कथन है (इसके फूरियर रूपांतरण पर एक शर्त लगाने के विपरीत), और अभिन्न जो फूरियर रूपांतरण और इसके व्युत्क्रम को परिभाषित करता है, बिल्कुल पूर्णांक हैं। प्रमेय के इस संस्करण का उपयोग टेम्पर्ड वितरण के लिए फूरियर व्युत्क्रम प्रमेय के प्रमाण में किया जाता है (नीचे देखें)।
पूर्णांक फूरियर रूपांतरण के साथ एकीकृत कार्य
फूरियर व्युत्क्रम प्रमेय उन सभी निरंतर कार्यों के लिए है जो बिल्कुल पूर्णांक हैं (अर्थात ) बिल्कुल पूर्णांक फूरियर रूपांतरण के साथ। इसमें श्वार्ट्ज के सभी कार्य शामिल हैं, इसलिए यह प्रमेय का पिछले एक से अधिक मजबूत रूप है। यह शर्त वही है जो ऊपर #Statement में प्रयोग की गई है।
एक मामूली संस्करण उस स्थिति को छोड़ना है जो function निरंतर हो लेकिन फिर भी आवश्यकता है कि यह और इसका फूरियर रूपांतरण पूरी तरह से एकीकृत हो। फिर लगभग हर जगह जहां g एक सतत कार्य है, और हरएक के लिए .
एक आयाम में एकीकृत कार्य
- टुकड़ा-टुकड़ा चिकना; एक आयाम
यदि फ़ंक्शन एक आयाम में पूरी तरह से पूर्णांक है (अर्थात ) और टुकड़े की तरह चिकनी है तो फूरियर उलटा प्रमेय का एक संस्करण धारण करता है। इस मामले में हम परिभाषित करते हैं
फिर सभी के लिए
अर्थात। की बाएँ और दाएँ सीमा के औसत के बराबर है पर . जिन बिंदुओं पर निरंतर है यह बस बराबर है .
प्रमेय के इस रूप का एक उच्च-आयामी अनुरूप भी है, लेकिन फोलैंड (1992) के अनुसार यह नाजुक है और बहुत उपयोगी नहीं है।
- टुकड़ों में निरंतर; एक आयाम
यदि फ़ंक्शन एक आयाम में पूरी तरह से पूर्णांक है (अर्थात ) लेकिन केवल टुकड़ों में निरंतर तो फूरियर व्युत्क्रम प्रमेय का एक संस्करण अभी भी कायम है। इस मामले में व्युत्क्रम फूरियर रूपांतरण में अभिन्न को एक तेज कट ऑफ फ़ंक्शन के बजाय एक चिकनी की सहायता से परिभाषित किया गया है; विशेष रूप से हम परिभाषित करते हैं
प्रमेय का निष्कर्ष तब वही होता है जैसा ऊपर चर्चा की गई टुकड़े-टुकड़े चिकने मामले के लिए होता है।
- निरंतर; किसी भी संख्या में आयाम
यदि निरंतर और पूर्णतः समाकलनीय है तब फूरियर व्युत्क्रम प्रमेय अभी भी तब तक कायम रहता है जब तक कि हम फिर से व्युत्क्रम परिवर्तन को एक चिकने कट ऑफ फंक्शन के साथ परिभाषित करते हैं अर्थात
निष्कर्ष अब बस इतना ही है कि सभी के लिए
- कोई नियमितता की स्थिति नहीं; किसी भी संख्या में आयाम
यदि हम (टुकड़ेवार) निरंतरता के बारे में सभी धारणाओं को छोड़ दें और मान लें कि यह पूरी तरह से पूर्णांक है, तो प्रमेय का एक संस्करण अभी भी कायम है। व्युत्क्रम परिवर्तन को फिर से चिकनी कट ऑफ के साथ परिभाषित किया गया है, लेकिन इस निष्कर्ष के साथ कि
- लगभग हर के लिए [1]
वर्ग पूर्णांक कार्य
इस मामले में फूरियर रूपांतरण को सीधे एक अभिन्न के रूप में परिभाषित नहीं किया जा सकता है क्योंकि यह बिल्कुल अभिसरण नहीं हो सकता है, इसलिए इसे घनत्व तर्क द्वारा परिभाषित किया गया है (Fourier_transform#On_Lp_spaces देखें)। उदाहरण के लिए, लगाना
हम सेट कर सकते हैं जहां सीमा में लिया जाता है -आदर्श। व्युत्क्रम परिवर्तन को घनत्व द्वारा उसी तरह परिभाषित किया जा सकता है या इसे फूरियर रूपांतरण और फ्लिप ऑपरेटर के संदर्भ में परिभाषित किया जा सकता है। हमारे पास तब है
- एलपी अंतरिक्ष में। एक आयाम (और केवल एक आयाम) में, यह भी दिखाया जा सकता है कि यह लगभग हर एक के लिए अभिसरण करता है x∈ℝ- यह कार्लसन का प्रमेय है, लेकिन माध्य वर्ग मानदंड में अभिसरण की तुलना में सिद्ध करना बहुत कठिन है।
टेम्पर्ड वितरण
फूरियर ट्रांसफॉर्म फूरियर ट्रांसफॉर्म # टेम्पर्ड_डिस्ट्रीब्यूशन श्वार्ट्ज कार्यों के स्थान पर फूरियर रूपांतरण के द्वैत द्वारा। विशेष तौर पर और सभी परीक्षण कार्यों के लिए हमलोग तैयार हैं
कहाँ पे अभिन्न सूत्र का उपयोग करके परिभाषित किया गया है। यदि तो यह सामान्य परिभाषा से सहमत है। हम व्युत्क्रम परिवर्तन को परिभाषित कर सकते हैं , या तो उसी तरह श्वार्ट्ज कार्यों पर व्युत्क्रम परिवर्तन से द्वैत द्वारा, या इसे फ्लिप ऑपरेटर के संदर्भ में परिभाषित करके (जहां फ्लिप ऑपरेटर द्वैत द्वारा परिभाषित किया गया है)। हमारे पास तब है
फूरियर श्रृंखला से संबंध
When considering the Fourier series of a function it is conventional to rescale it so that it acts on
(or is
-periodic). In this section we instead use the somewhat unusual convention taking
to act on
, since that matches the convention of the Fourier transform used here.
फूरियर व्युत्क्रम प्रमेय फूरियर श्रृंखला के अभिसरण के अनुरूप है। हमारे पास फूरियर ट्रांसफॉर्म केस में है
फूरियर श्रृंखला के मामले में हमारे पास इसके बजाय है
विशेष रूप से, एक आयाम में और योग से चलता है प्रति .
अनुप्रयोग
फूरियर रूपांतरण लागू होने पर कुछ समस्याएं, जैसे कुछ अंतर समीकरण, हल करना आसान हो जाता है। उस मामले में उलटा फूरियर रूपांतरण का उपयोग करके मूल समस्या का समाधान पुनर्प्राप्त किया जाता है।
फूरियर रूपांतरण#अनुप्रयोगों में फूरियर उलटा प्रमेय अक्सर एक महत्वपूर्ण भूमिका निभाता है। कई स्थितियों में मूल रणनीति फूरियर रूपांतरण को लागू करना है, कुछ संचालन या सरलीकरण करना है, और फिर उलटा फूरियर रूपांतरण लागू करना है।
अधिक संक्षेप में, फूरियर उलटा प्रमेय एक ऑपरेटर (गणित) के रूप में फूरियर रूपांतरण के बारे में एक बयान है (फूरियर रूपांतरण#Fourier_transform_on_function_spaces देखें)। उदाहरण के लिए, फूरियर व्युत्क्रम प्रमेय पर दिखाता है कि फूरियर रूपांतरण एक एकात्मक संकारक है .
उलटा परिवर्तन के गुण
उलटा फूरियर रूपांतरण मूल फूरियर रूपांतरण के समान ही है: जैसा कि ऊपर चर्चा की गई है, यह केवल फ्लिप ऑपरेटर के आवेदन में भिन्न है। इस कारण से फूरियर ट्रांसफॉर्म #Properties_of_the_Fourier_transform व्युत्क्रम फूरियर रूपांतरण के लिए होल्ड करता है, जैसे कि कनवल्शन प्रमेय और रीमैन-लेबेस्गु लेम्मा।
फूरियर रूपांतरण # महत्वपूर्ण फूरियर रूपांतरणों की तालिकाएं आसानी से उलटा फूरियर रूपांतरण के लिए फ्लिप ऑपरेटर के साथ लुक-अप फ़ंक्शन की रचना करके उपयोग की जा सकती हैं। उदाहरण के लिए, रेक्ट फंक्शन के फूरियर रूपांतरण को देखते हुए हम देखते हैं
तो उलटा परिवर्तन के लिए संगत तथ्य है
प्रमाण
सबूत दिए गए कुछ तथ्यों का उपयोग करता है तथा .
- यदि तथा , फिर .
- यदि तथा , फिर .
- के लिये , फुबिनी का सिद्धांत इसे पूरा करता है .
- परिभाषित करना ; फिर .
- परिभाषित करना . फिर साथ कनवल्शन को दर्शाते हुए, एक नवजात डेल्टा कार्य है: किसी भी निरंतर के लिए और बिंदु , (जहां अभिसरण बिंदुवार है)।
चूंकि, धारणा से, , तो यह वर्चस्व वाले अभिसरण प्रमेय का अनुसरण करता है
परिभाषित करना . तथ्यों 1, 2 और 4 को बार-बार लागू करके, यदि आवश्यक हो, तो हम प्राप्त करते हैं
तथ्य 3 का उपयोग करना तथा , प्रत्येक के लिए , अपने पास
का कनवल्शन अनुमानित पहचान के साथ। लेकिन जबसे , तथ्य 5 कहता है
उपरोक्त को एक साथ रखकर हमने दिखाया है
टिप्पणियाँ
- ↑ An operator is a transformation that maps functions to functions. The flip operator, the Fourier transform, the inverse Fourier transform and the identity transform are all examples of operators.
इस पेज में लापता आंतरिक लिंक की सूची
संदर्भ