फर्मेट बिंदु
ज्यामिति में, त्रिभुज का फ़र्मेट बिंदु, जिसे टोरिकेली बिंदु या फ़र्मेट-टोरिकेली बिंदु भी कहा जाता है, एक ऐसा बिंदु है, जहाँ त्रिभुज के तीन शीर्षों में से प्रत्येक से बिंदु तक तीन दूरियों का योग सबसे छोटा संभव है।[1] इसका नाम अतः रखा गया है क्योंकि इस समस्या को सबसे पहले पियरे डी फर्मेट ने इवेंजलिस्ता टोरिकेली को एक निजी पत्र में उठाया था, जिन्होंने इसे हल किया था।
फर्मेट बिंदु तीन बिंदुओं के लिए ज्यामितीय माध्यिका और स्टेनर वृक्ष की समस्याओं का समाधान देता है।
निर्माण
अधिकतम 120° के सबसे बड़े कोण वाले त्रिभुज का फर्मेट बिंदु केवल इसका पहला समद्विबाहु केंद्र या X(13) है, जिसका निर्माण निम्न प्रकार से किया गया है:
- दिए गए त्रिभुज की दो यादृच्छिक विधियों से चुनी गई भुजाओं में से प्रत्येक पर एक समबाहु त्रिभुज की रचना करें।
- प्रत्येक नए शीर्ष (ज्यामिति) से मूल त्रिभुज के विपरीत शीर्ष तक एक रेखा खींचें।
- दो रेखाएँ फर्मेट बिंदु पर प्रतिच्छेद करती हैं।
एक वैकल्पिक विधि निम्नलिखित है:
- यादृच्छिक विधियों से चुने गए दो भुजाओं में से प्रत्येक पर, एक समद्विबाहु त्रिभुज का निर्माण करें, जिसका आधार सम्बन्धित भुजा हो, आधार पर 30-डिग्री कोण हो, और प्रत्येक समद्विबाहु त्रिभुज का तीसरा शीर्ष मूल त्रिभुज के बाहर स्थित हो।
- प्रत्येक समद्विबाहु त्रिभुज के लिए एक वृत्त बनाएं, प्रत्येक स्थितयों में समद्विबाहु त्रिभुज के नए शीर्ष पर केंद्र के साथ और उस समद्विबाहु त्रिभुज की दो नई भुजाओं में से प्रत्येक के बराबर त्रिज्या के साथ।
- दो वृत्तों के बीच मूल त्रिभुज के आन्तरिक प्रतिच्छेदन फर्मेट बिंदु है।
जब एक त्रिभुज का कोण 120° से अधिक होता है, तो फ़र्मेट बिंदु अधिक कोण वाले शीर्ष पर स्थित होता है।
निम्नलिखित में "स्थिति 1" का अर्थ है कि त्रिभुज का कोण 120° से अधिक है और "स्थिति 2" का अर्थ है कि त्रिभुज का कोई भी कोण 120° से अधिक नहीं है।
एक्स (13) का स्थान
चित्र 2 समबाहु त्रिभुज ARB, AQC और CPB को यादृच्छिक त्रिभुज ABC की भुजाओं से जुड़ा हुआ दिखाता है।
यहाँ चक्रीय बिंदुओं के गुणों का उपयोग करके यह दिखाने का प्रयास गया है कि चित्र 2 में तीन रेखाएँ RC, BQ और AP सभी बिंदु F पर प्रतिच्छेद करती हैं और एक दूसरे को 60° के कोण पर काटती हैं।
त्रिभुज RAC और BAQ सर्वांगसमता (ज्यामिति) हैं क्योंकि दूसरा, A के सापेक्ष पहले का 60° का घूर्णन है। अतः ∠ARF = ∠ABF और ∠AQF = ∠ACF। खंड AF पर लागू उत्कीर्ण कोण प्रमेय के व्युत्क्रम से, बिंदु ARBF चक्रीय बिंदु हैं (वे एक वृत्त पर स्थित हैं)। इसी प्रकार, बिंदु AFCQ चक्रीय हैं।
∠ARB = 60°, अतः ∠AFB = 120°, उत्कीर्ण कोण प्रमेय का उपयोग करके। इसी प्रकार, ∠AFC = 120°।
अतः ∠BFC = 120°। इसलिए, ∠BFC और ∠BPC का योग 180° होता है। उत्कीर्ण कोण प्रमेय का उपयोग करते हुए, इसका अर्थ है कि बिंदु BPCF चक्रीय हैं। अतः, खण्ड BP पर लागू किए गए उत्कीर्ण कोण प्रमेय का उपयोग करते हुए, ∠BFP = ∠BCP = 60°। क्योंकि ∠BFP + ∠BFA = 180°, बिंदु F रेखाखंड AP पर स्थित है। अतः, रेखाएँ RC, BQ और AP संगामी हैं (वे एक बिंदु पर प्रतिच्छेद करती हैं)। Q.E.D.
यह प्रमाण सामान्यतः स्थिति 2 में लागू होता है क्योंकि यदि ∠BAC > 120°, बिंदु A, BPC के परिवृत्त के अंदर स्थित है जो A और F की सापेक्ष स्थिति को परिवर्तित कर देता है। चूँकि इसे सरलता से स्थिति 1 को छुपाने के लिए संशोधित किया जाता है। फिर ∠AFB = ∠AFC = 60° अतः ∠BFC = ∠AFB + ∠AFC = 120° जिसका अर्थ है BPCF चक्रीय है इसलिए ∠BFP = ∠BCP = 60° = ∠BFA। अतः, A, FP पर स्थित है।
चित्र 2 में वृत्तों के केंद्रों को जोड़ने वाली रेखाएँ रेखाखंडों AP, BQ और CR पर लंब हैं। उदाहरण के लिए, ARB वाले वृत्त के केंद्र और AQC वाले वृत्त के केंद्र को जोड़ने वाली रेखा, खंड AP के लंबवत होती है। अतः, वृत्तों के केंद्रों को जोड़ने वाली रेखाएँ भी 60° के कोण पर प्रतिच्छेद करती हैं। अतः, वृत्तों के केंद्र एक समबाहु त्रिभुज बनाते हैं। इसे नेपोलियन की प्रमेय के नाम से जाना जाता है।
फर्मेट बिंदु का स्थान
पारंपरिक ज्यामिति
किसी भी यूक्लिडियन त्रिभुज ABC और एक मनमाने बिंदु P को देखते हुए d(P) = PA+PB+PC दिया गया है, जिसमें PA P और A के बीच की दूरी को दर्शाता है। इस खंड का उद्देश्य एक बिंदु P की पहचान करना है।0 ऐसा है कि डी (पी0) <d(P) सबके लिए P ≠ P0. यदि ऐसा कोई बिंदु मौजूद है तो वह फर्मेट बिंदु होगा। निम्नलिखित में Δ त्रिभुज के अंदर के बिंदुओं को निरूपित करेगा और इसकी सीमा Ω को शामिल करने के लिए लिया जाएगा।
एक महत्वपूर्ण परिणाम जिसका उपयोग किया जाएगा वह डॉगल नियम है जो यह दावा करता है कि यदि एक त्रिभुज और बहुभुज का एक पक्ष उभयनिष्ठ है और शेष त्रिभुज बहुभुज के अंदर है तो त्रिभुज की परिधि बहुभुज की तुलना में छोटी है।
[अगर AB कॉमन साइड है तो बहुभुज को X पर काटने के लिए AC को एक्सटेंड करें। फिर त्रिकोण असमानता से पॉलीगॉन परिधि > AB + AX + XB = AB + AC + CX + XB ≥ AB + AC + BC।]
माना P, Δ के बाहर कोई बिंदु है। प्रत्येक शीर्ष को उसके दूरस्थ क्षेत्र से संबद्ध करें; वह है, (विस्तारित) विपरीत दिशा से परे आधा विमान। ये 3 जोन Δ को छोड़कर पूरे विमान को कवर करते हैं और P स्पष्ट रूप से उनमें से एक या दो में स्थित है। यदि P दो में है (बी और सी ज़ोन चौराहे कहते हैं) तो डॉगल नियम द्वारा P' = A को सेट करने से d(P') = d(A) <d(P) का तात्पर्य है। वैकल्पिक रूप से यदि P केवल एक क्षेत्र में है, मान लीजिए A-क्षेत्र, तो d(P') < d(P) जहां P' AP और BC का प्रतिच्छेदन है। अतः Δ के बाहर प्रत्येक बिंदु P के लिए Ω में एक बिंदु P' मौजूद है जैसे कि d(P') < d(P)।
स्थिति 1. त्रिभुज का कोण ≥ 120° है।
सामान्यता में कमी के बिना मान लीजिए कि A पर कोण ≥ 120° है। समबाहु त्रिभुज AFB की रचना करें और Δ में किसी भी बिंदु P के लिए (स्वयं A को छोड़कर) Q की रचना करें ताकि त्रिभुज AQP समबाहु हो और उसका अभिविन्यास दिखाया गया हो। तब त्रिभुज ABP, त्रिभुज AFQ का A के बारे में 60° का घूर्णन है, अतः ये दोनों त्रिभुज सर्वांगसम हैं और यह d(P) = CP+PQ+QF का अनुसरण करता है, जो कि पथ CPQF की लंबाई है। चूंकि P को ABC के भीतर स्थित होने के लिए विवश किया गया है, डॉगल नियम द्वारा इस पथ की लंबाई AC+AF = d(A) से अधिक हो जाती है। अतः, d(A) < d(P) सभी P Δ Δ, P ≠ A के लिए। अब P को Δ के बाहर की सीमा की अनुमति दें। ऊपर से एक बिंदु P' Ω इस तरह मौजूद है कि d(P') <d(P) और d(A) ≤ d (P') के रूप में यह इस प्रकार है कि Δ के बाहर सभी P के लिए d(A) <d(P) . इस प्रकार डी (ए) <डी (पी) सभी पी ≠ ए के लिए जिसका मतलब है कि ए Δ का फर्मेट बिंदु है। दूसरे शब्दों में, फर्मेट बिंदु अधिक कोण वाले शीर्ष पर स्थित है।
स्थिति 2. त्रिभुज का कोई कोण ≥ 120° नहीं है।
समबाहु त्रिभुज BCD की रचना करें और मान लें कि P Δ के अंदर कोई बिंदु है और समबाहु त्रिभुज CPQ की रचना करें। तब CQD, C के बारे में CPB का 60° घूर्णन है, अतः d(P) = PA+PB+PC = AP+PQ+QD जो पथ APQD की लंबाई है। चलो पी0 वह बिंदु हो जहां AD और CF प्रतिच्छेद करते हैं। इस बिंदु को आमतौर पर पहला आइसोगोनिक केंद्र कहा जाता है। P के साथ भी यही अभ्यास करें0 जैसा आपने P के साथ किया था, और बिंदु Q ज्ञात कीजिए0. कोणीय प्रतिबंध द्वारा पी0 Δ के अंदर स्थित है इसके अलावा BCF, B के बारे में BDA का 60° का घूर्णन है अतः Q0 AD पर कहीं झूठ बोलना चाहिए। चूँकि CDB = 60° यह Q का अनुसरण करता है0 P के बीच स्थित है0 और D जिसका अर्थ है AP0Q0D एक सीधी रेखा है अतः d(P0) = विज्ञापन। इसके अलावा, अगर पी ≠ पी0 तो या तो P या Q AD पर स्थित नहीं होगा जिसका अर्थ है d(P0) = एडी <डी (पी)। अब P को Δ के बाहर की सीमा की अनुमति दें। ऊपर से एक बिंदु P' Ω इस प्रकार मौजूद है कि d(P') < d(P) और d(P) के रूप में0) ≤ डी (पी ') यह इस प्रकार है कि डी (पी0) <डी (पी) Δ के बाहर सभी पी के लिए। यानी पी0 Δ का फर्मेट बिंदु है। दूसरे शब्दों में, फ़र्मेट बिंदु पहले आइसोगोनिक केंद्र के साथ मेल खाता है।
वेक्टर विश्लेषण
मान लीजिए O, A, B, C, X एक समतल में कोई पाँच बिंदु हैं। वैक्टर को निरूपित करें क्रमशः a, b, c, x द्वारा, और i, j, k को a, b, c के साथ O से इकाई वैक्टर होने दें।
अब |ए| = a⋅i = (a - x)⋅i + x⋅i ≤ |a - x| + x⋅i और इसी प्रकार |b| ≤ |बी - एक्स | + x⋅j और |c| ≤ |सी - एक्स | + x⋅k.
जोड़ने से |a| मिलता है + |बी| + |सी| ≤ |ए - एक्स| + |बी - एक्स| + |सी - एक्स| + x⋅(i + j + k).
यदि a, b, c O पर 120° के कोण पर मिलते हैं तो i + j + k = 0 तो |a| + |बी| + |सी| ≤ |ए - एक्स| + |बी - एक्स| + |सी - एक्स| सभी के लिए x.
दूसरे शब्दों में, OA + OB + OC ≤ XA + XB + XC और अतः O फर्मेट बिंदु है 'एबीसी' का।
यह तर्क तब विफल हो जाता है जब त्रिभुज का कोण ∠C > 120° होता है क्योंकि कोई बिंदु O नहीं होता है जहाँ a, b, c 120° के कोण पर मिलते हैं। फिर भी, यह सरलता से k = - (i + j) को फिर से परिभाषित करके और O को C पर रख कर तय किया जाता है ताकि c = 0. ध्यान दें कि | k | ≤ 1 क्योंकि यूनिट वैक्टर i और j के बीच का कोण ∠C है जो 120° से अधिक है। चूंकि |0| ≤ |0 - x| + x⋅k तीसरी असमानता अभी भी कायम है, अन्य दो असमानताएँ अपरिवर्तित हैं। सबूत अब ऊपर के रूप में जारी है (तीन असमानताओं को जोड़कर और i + j + k = 0 का उपयोग करके) एक ही निष्कर्ष पर पहुंचने के लिए कि 'O' (या इस स्थितयों में 'C) का फर्मेट बिंदु होना चाहिए। 'एबीसी'।
लैग्रेंज गुणक
एक त्रिकोण के भीतर बिंदु खोजने के लिए एक अन्य दृष्टिकोण, जिसमें त्रिकोण के शीर्ष (ज्यामिति) की दूरियों का योग न्यूनतम है, गणितीय अनुकूलन विधियों में से एक का उपयोग करना है; विशेष रूप से, लैग्रेंज मल्टीप्लायरों की विधि और कोसाइन के नियम।
हम त्रिभुज के भीतर बिंदु से उसके शीर्ष तक रेखाएँ खींचते हैं और उन्हें X, Y और Z कहते हैं। इसके अलावा, इन रेखाओं की लंबाई क्रमशः x, y और z होने दें। बता दें कि X और Y के बीच का कोण α, Y और Z के बीच का कोण β है। तब X और Z के बीच का कोण (2π - α - β) है। Lagrange गुणक की विधि का उपयोग करके हमें Lagrangian L का न्यूनतम ज्ञात करना होगा, जिसे इस प्रकार व्यक्त किया गया है:
- एल = एक्स + वाई + जेड + λ1 (एक्स2 + और2 − 2xy cos(α) − a2) + एल2 (वाई2 + के साथ2 − 2yz cos(β) − b2) + एल3 (साथ2 + एक्स2 − 2zx cos(α + β) - c2)
जहाँ a, b और c त्रिभुज की भुजाओं की लंबाई हैं।
पांच आंशिक डेरिवेटिव δL/δx, δL/δy, δL/δz, δL/δα, δL/δβ को शून्य से बराबर करना और λ को हटाना1, एल2, एल3 अंततः sin(α) = sin(β) और sin(α + β) = - sin(β) तो α = β = 120° देता है। चूँकि निष्कासन एक लंबा और थकाऊ व्यवसाय है, और अंतिम परिणाम केवल केस 2 को कवर करता है।
गुण
* जब त्रिभुज का सबसे बड़ा कोण 120° से बड़ा न हो, तो X(13) फर्मेट बिंदु होता है।
- त्रिभुज की भुजाओं द्वारा X(13) पर बनाए गए सभी कोण 120° (स्थिति 2), या 60°, 60°, 120° (स्थिति 1) के बराबर हैं।
- तीन निर्मित समबाहु त्रिभुजों के परिवृत्त X(13) पर समवर्ती हैं।
- पहले आइसोगोनिक केंद्र के लिए त्रिरेखीय निर्देशांक, X(13):
- सीएससी(ए + π/3) : सीएससी(बी + π/3) : सीएससी(सी + π/3), या, समकक्ष,
- sec(A − π/6) : sec(B − π/6) : sec(C − π/6).[2]
- दूसरे आइसोगोनिक केंद्र के लिए त्रिरेखीय निर्देशांक, X(14):
- csc(A − π/3) : csc(B − π/3) : csc(C − π/3), या, इसके समकक्ष,
- सेकेंड (ए + π/6) : सेकेंड (बी + π/6) : सेकेंड (सी + π/6)।[3]
- फर्मेट बिंदु के लिए त्रिरेखीय निर्देशांक:
- 1 − u + uvw sec(A − π/6) : 1 − v + uvw sec(B − π/6) : 1 − w + uvw sec(C − π/6)
- जहाँ u, v, w क्रमशः बूलियन डोमेन को निरूपित करते हैं (A<120°), (B<120°), (C<120°).
- X(13) का आइसोगोनल संयुग्म आइसोडायनामिक बिंदु है, X(15):
- पाप (ए + π/3) : पाप (बी + π/3) : पाप (सी + π/3)।[4]
- X(14) का आइसोगोनल संयुग्म आइसोडायनामिक बिंदु है, X(16):
- sin(A − π/3) : sin(B − π/3) : sin(C − π/3).[5]
- निम्नलिखित त्रिभुज समबाहु हैं:
- एक्स (13) का पेडल त्रिकोण
- एक्स (14) का एंटीपेडल त्रिकोण
- एक्स (15) का पेडल त्रिकोण
- एक्स (16) का पेडल त्रिकोण
- X(15) का सर्कमसेवियन त्रिकोण
- X(16) का सर्कमसेवियन त्रिकोण
- रेखाएँ X(13)X(15) और X(14)X(16) यूलर रेखा के समानांतर हैं। तीन रेखाएँ यूलर अनंत बिंदु, X(30) पर मिलती हैं।
- बिंदु X(13), X(14), परिवृत्त, और नौ-बिंदु वृत्त|नौ-बिंदु केंद्र एक लेस्टर प्रमेय पर स्थित हैं।
- रेखा X(13)X(14) यूलर रेखा से X(2) और X(4) के मध्य बिंदु पर मिलती है।[6]
- फर्मेट बिंदु खुली ऑर्थोसेंट्रोइडल डिस्क में स्थित होता है जो अपने स्वयं के केंद्र में छिद्रित होता है, और उसमें कोई भी बिंदु हो सकता है।[7]
उपनाम
आइसोगोनिक केंद्र X(13) और X(14) को क्रमशः पहले फर्मेट बिंदु और दूसरे फर्मेट बिंदु के रूप में भी जाना जाता है। विकल्प सकारात्मक फर्मेट बिंदु और नकारात्मक फर्मेट बिंदु हैं। हालाँकि ये अलग-अलग नाम भ्रमित करने वाले हो सकते हैं और शायद इनसे बचना ही सबसे अच्छा है। समस्या यह है कि अधिकांश साहित्य फ़र्मेट बिंदु और पहले फ़र्मेट बिंदु के बीच के अंतर को धुंधला कर देता है, जबकि उपरोक्त केस 2 में ही वे वास्तव में समान हैं।
इतिहास
यह प्रश्न इवेंजेलिस्ता टोर्रिकेली के लिए एक चुनौती के रूप में फर्मेट द्वारा प्रस्तावित किया गया था। उन्होंने समस्या को फ़र्मेट के समान तरीके से हल किया, यद्यपि इसके बजाय तीन नियमित त्रिभुजों के परिवृत्तों के प्रतिच्छेदन का उपयोग किया। उनके शिष्य, विवियानी ने 1659 में समाधान प्रकाशित किया।[8]
यह भी देखें
- ज्यामितीय माध्यिका या फ़र्मेट-वेबर बिंदु, वह बिंदु जो दिए गए तीन से अधिक बिंदुओं की दूरियों के योग को न्यूनतम करता है।
- लेस्टर की प्रमेय
- त्रिकोण केंद्र
- नेपोलियन अंक
- वेबर समस्या
संदर्भ
- ↑ Cut The Knot - The Fermat Point and Generalizations
- ↑ Entry X(13) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
- ↑ Entry X(14) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
- ↑ Entry X(15) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
- ↑ Entry X(16) in the Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine
- ↑ Kimberling, Clark. "त्रिभुज केंद्रों का विश्वकोश".
- ↑ Christopher J. Bradley and Geoff C. Smith, "The locations of triangle centers", Forum Geometricorum 6 (2006), 57--70. http://forumgeom.fau.edu/FG2006volume6/FG200607index.html
- ↑ Weisstein, Eric W. "Fermat Points". MathWorld.
इस पेज में लापता आंतरिक लिंक की सूची
- त्रिकोण
- स्टाइनर ट्री की समस्या
- समभुज त्रिकोण
- समद्विबाहु त्रिकोण
- खुदा हुआ कोण
- कोसाइन का कानून
- ट्रिलिनियर निर्देशांक
- यूलर लाइन
- परिमित त्रिकोण
- नौ-बिंदु चक्र
- नेपोलियन इशारा करता है
- त्रिभुज केंद्र
बाहरी संबंध
- "Fermat-Torricelli problem", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- फर्मेट Point by Chris Boucher, The Wolfram Demonstrations Project.
- फर्मेट-Torricelli generalization at Dynamic Geometry Sketches Interactive sketch generalizes the फर्मेट-Torricelli point.
- A practical example of the फर्मेट point
- iOS Interactive sketch