प्रोस्थफेरेसिस
This article needs additional citations for verification. (May 2019) (Learn how and when to remove this template message) |
प्रोस्थफेरेसिस(ग्रीक से προσθαφαίρεσις) 16 वीं शताब्दी के अंत और 17 वीं शताब्दी के प्रारम्भ में त्रिकोणमिति के सूत्रों का उपयोग करके अनुमानित गुणा और विभाजन के लिए उपयोग किया गया एक कलन विधि था। 1614 में लघुगणक के आविष्कार से पहले 25 वर्षों के लिए, यह उत्पाद की अनुमानित उपयोगिता का एकमात्र प्रचलित माध्यम था। इसका नाम ग्रीक भाषा के प्रोस्थेसिस(πρόσθεσις) और एफेरेसिस(ἀφαίρεσις) से आया है, जिसका अर्थ है जोड़ और घटाव, प्रक्रिया के दो चरण।[1][2]
इतिहास और प्रेरणा
16 वीं शताब्दी में यूरोप द्वारा लंबी यात्राओं पर जहाजों का खगोलीय संचालन उनकी स्थिति और पाठ्यक्रम निर्धारित करने के लिए यथेष्ठ था। खगोलशास्त्रियों द्वारा बनाए गए इन विशालकाय सारणी में समय पर विभिन्न स्थानों पर तारों और ग्रहों की स्थिति का विस्तार किया गया। इनकी गणना करने के लिए उपयोग किए जाने वाले मॉडल गोलाकार त्रिकोणमिति पर आधारित थे, जो गोलाकार त्रिकोणों के कोणों और चाप की लंबाई से संबंधित है(आरेख देखें, दाएं) जैसे सूत्रों का उपयोग करके
तथा
जहाँ a, b और c संगत चापों द्वारा गोले के केंद्र पर अंतरित कोण हैं।
जब ऐसे सूत्र में एक मात्रा अज्ञात हो, लेकिन अन्य ज्ञात हों, तो गुणनफल, प्रभागों और त्रिकोणमितीय सारणी खण्डों की शृंखला के उपयोग से अज्ञात मात्रा का परिकलन किया जा सकता है। खगोलविदों को इस तरह की हजारों गणनाएँ करनी पड़ीं, और क्योंकि उपलब्ध गुणन की सबसे अच्छी विधि दीर्घ गुणन थी, इस समय का अधिकांश समय उत्पादों को गुणन करने में व्यतीत होता था।
गणितज्ञ, विशेष रूप से वे जो खगोलशास्त्री भी थे, एक आसान तरीके की खोज कर रहे थे, और त्रिकोणमिति इन लोगों के लिए सबसे उन्नत और परिचित क्षेत्रों में से एक था। प्रोस्थफेरेसिस 1580 के दशक में दिखाई दिया, लेकिन इसके प्रवर्तक निश्चित रूप से ज्ञात नहीं हैं, इसके योगदानकर्ताओं में गणितज्ञ इब्न यूनिस, जोहान्स वर्नर, पॉल विटिच, जोस्ट बर्गी, क्रिस्टोफर की और फ्रांकोइस विएते सम्मलित थे। विटिच, यूनिस और क्लेवियस सभी खगोलविद थे और सभी को विधि की खोज के साथ विभिन्न स्रोतों द्वारा श्रेय दिया गया है। इसके सबसे प्रसिद्ध प्रस्तावक टाइको ब्राहे थे, जिन्होंने इसे ऊपर वर्णित खगोलीय गणनाओं के लिए बड़े पैमाने पर उपयोग किया। इसका उपयोग जॉन नेपियर द्वारा भी किया गया था, जिन्हें लघुगणक का आविष्कार करने का श्रेय दिया जाता है जो इसे बदल देगा।
निकोलस कोपरनिकस ने अपने 1543 के काम डी रेवोल्यूशनिबस ऑर्बियम कोएलेस्टियम में कई बार "प्रोस्थेफेरेसिस" का उल्लेख किया है, जिसका अर्थ है पृथ्वी की वार्षिक गति के कारण पर्यवेक्षक के विस्थापन के कारण "महान लंबन"।
पहचान
प्रोस्थफेरेसिस द्वारा उपयोग की गई त्रिकोणमितीय पहचान त्रिकोणमितीय कार्यों के उत्पादों को योगों से संबंधित करती है। इनमें निम्नलिखित सम्मलित हैं:
ऐसा माना जाता है कि इनमें से पहले दो जोस्ट बर्गी द्वारा प्राप्त किए गए हैं,[citation needed] जिन्होंने उन्हें [टायको?] ब्राहे से संबंधित किया;[citation needed] अन्य इन दोनों से आसानी से अनुसरण करते हैं। यदि दोनों पक्षों को 2 से गुणा किया जाए, तो इन सूत्रों को वर्नर सूत्र भी कहा जाता है।
एल्गोरिथम
ऊपर दिए गए दूसरे सूत्र का उपयोग करते हुए, दो संख्याओं के गुणन के लिए तकनीक इस प्रकार कार्य करती है:
- मापन डाउन: दशमलव बिंदु को बाएँ या दाएँ स्थानांतरित करके, दोनों संख्याओं को बीच के मानों पर मापन करें तथा , के रूप में जाना जाता है तथा .
- व्युत्क्रम कोसाइन: व्युत्क्रम कोज्या तालिका का उपयोग करके, दो कोण खोजें तथा जिनकी कोसाइन हमारे दो मूल्य हैं।
- योग और अंतर: दो कोणों का योग और अंतर ज्ञात करें।
- कोसाइन औसत करें: कोसाइन तालिका का उपयोग करके योग और अंतर कोणों के कोसाइन का पता लगाएं और उन्हें(उपरोक्त दूसरे सूत्र के अनुसार) उत्पाद देते हुए औसत करें .
- मापन अप: उत्तर में दशमलव स्थान को शिफ्ट करें संयुक्त संख्या में हमने प्रत्येक निविष्ट के लिए पहले चरण में दशमलव को स्थानांतरित किया है, लेकिन विपरीत दिशा में।
उदाहरण के लिए, कहते हैं कि हम गुणा करना चाहते हैं तथा . चरणों का पालन:
- मापन डाउन: प्रत्येक में दशमलव बिंदु को तीन स्थान बाईं ओर शिफ्ट करें। हम पाते हैं तथा .
- व्युत्क्रम कोसाइन: लगभग 0.105 है, और के बारे में है .
- योग और अंतर: , तथा .
- कोसाइन औसत करें: के बारे में है .
- मापन अप: प्रत्येक के लिए तथा हमने दशमलव बिंदु को तीन स्थान बाईं ओर स्थानांतरित कर दिया है, इसलिए उत्तर में हम छह स्थान दाईं ओर स्थानांतरित करते हैं। परिणाम है . यह वास्तविक उत्पाद के बहुत करीब है, (%0.8% की त्रुटि)।
यदि हम दो प्रारंभिक मूल्यों के कोसाइन का उत्पाद चाहते हैं, जो ऊपर उल्लिखित कुछ खगोलीय गणनाओं में उपयोगी है, यह आश्चर्यजनक रूप से और भी आसान है: केवल चरण 3 और 4 ऊपर आवश्यक हैं।
विभाजित करने के लिए, हम कोज्या के व्युत्क्रम के रूप में छेदक की परिभाषा का उपयोग करते हैं। को से भाग देने के लिए, हम संख्या को और तक मापन करते हैं। का कोसाइन है। फिर छेदकों की तालिका का उपयोग करके पता लगाएं कि , का छेदक है। इसका अर्थ है कि , का कोज्या है, और इसलिए हम उपरोक्त प्रक्रिया का उपयोग करके को से गुणा कर सकते हैं। कोणों के योग के कोसाइन का औसत निकालें, , उनके अंतर के कोज्या के साथ, ,
दशमलव बिंदु का पता लगाने के लिए मापन करने पर अनुमानित उत्तर, 50 देता है।
एल्गोरिथम के अन्य सूत्रों का उपयोग एक ही तरह के होते हैं, लेकिन प्रत्येक में अलग-अलग तालिकाओं(ज्या, व्युत्क्रम ज्या, कोसाइन, और प्रतिलोम कोसाइन) का उपयोग किया जाता है। पहले दो सबसे आसान हैं क्योंकि उनमें से प्रत्येक के लिए केवल दो तालिकाओं की आवश्यकता होती है। चूंकि, दूसरे सूत्र का उपयोग करने का अनूठा लाभ है कि यदि केवल एक कोज्या तालिका उपलब्ध है, इसका उपयोग निकटतम कोज्या मान वाले कोण की खोज करके व्युत्क्रम कोसाइन का अनुमान लगाने के लिए किया जा सकता है।
ध्यान दें कि उपरोक्त एल्गोरिथम लघुगणक का उपयोग करके गुणा करने की प्रक्रिया के समान है, जो इन चरणों का अनुसरण करता है: मापन डाउन करें, लघुगणक लें, जोड़ें, व्युत्क्रम लघुगणक लें, मापन अप करें। यह कोई आश्चर्य की बात नहीं है कि लघुगणक के प्रवर्तकों ने प्रोस्थफेरेसिस का उपयोग किया था। वास्तव में दोनों गणितीय रूप से घनिष्ठ रूप से संबंधित हैं। आधुनिक शब्दों में, प्रोस्थफेरेसिस को जटिल संख्याओं के लघुगणक पर, विशेष रूप से यूलर के सूत्र पर निर्भर करने के रूप में देखा जा सकता है।
त्रुटि घटाना
यदि सभी प्रचालन उच्च परिशुद्धता के साथ किए जाते हैं, तो उत्पाद वांछित के रूप में सटीक हो सकता है। यद्यपि विवरणों, विभिन्नताओं और औसत की गणना उच्च परिशुद्धता के साथ आसानी से की जा सकती है, यहां तक कि हाथों से, त्रिकोणमितीय फलनों और विशेष रूप से प्रतिलोम त्रिकोणमितीय फलनों की गणना करना आसान नहीं है। इसी कारण इस पद्धति की परिशुद्धता काफी हद तक उपयोग किये गये त्रिकोणमितीय सारणियों की सटीकता और विवरण पर निर्भर करती है।
उदाहरण के लिए, प्रत्येक घात के लिए एक प्रविष्टि के साथ एक ज्या तालिका 0.0087 तक ऑफ हो सकती है यदि हम केवल एक कोण को निकटतम घात तक राउंड ऑफ करते हैं; हर बार जब हम तालिका के आकार को दोगुना करते हैं( उदाहरण के लिए, प्रत्येक घात के बजाय प्रत्येक आधे घात के लिए प्रविष्टियां देकर ) हम इस त्रुटि को आधा कर देते हैं। प्रोस्थेफेरेसिस के लिए तालिकाओं का निर्माण श्रमसाध्य रूप से किया गया था, जिसमें प्रत्येक सेकंड या घात के 3600 वें मान थे।
व्युत्क्रम ज्या और कोसाइन फलन विशेष रूप से कष्टदायक होते हैं, क्योंकि वे -1 और 1 के पास तीव्र हो जाते हैं। एक समाधान इस क्षेत्र में अधिक तालिका मूल्यों को सम्मलित करना है। दूसरा तरीका निविष्ट को -0.9 और 0.9 के बीच की संख्या में मापन करना है। उदाहरण के लिए 950, 0.950 के बजाय 0.095 हो जाएगा।
सटीकता को बढ़ाने के लिए एक अन्य प्रभावी दृष्टिकोण रैखिक प्रक्षेप है, जो दो आसन्न सारणी मानों के बीच मूल्य का चयन करता है। उदाहरण के लिए, यदि हम जानते हैं कि 45° की ज्या लगभग 0.707 है और 46° की ज्या लगभग 0.719 है, तो हम 45.7° की ज्या का अनुमान 0.707 ×(1 - 0.7) + 0.719 × 0.7 = 0.7154 के रूप में लगा सकते हैं। वास्तविक साइन 0.7157 है। रेखीय प्रक्षेप के साथ संयुक्त केवल 180 प्रविष्टियों वाली कोसाइन की एक तालिका उतनी ही सटीक है, जितनी कि इसके बिना लगभग 45000 प्रविष्टियाँ वाली तालिका। यहां तक कि प्रक्षेपित मूल्य का एक त्वरित अनुमान अधिकांशतः निकटतम तालिका मान से बहुत करीब होता है। अधिक विवरण के लिए खोज तालिका देखें।
विपरीत पहचान
गुणन के संदर्भ में अतिरिक्त व्यक्त करने वाले सूत्र प्राप्त करने के लिए उत्पाद सूत्रों का प्रयोग भी किया जा सकता है। चूंकि अभिकलन उत्पादों के लिए कम उपयोगी है, ये अभी भी त्रिकोणमितीय परिणामों को प्राप्त करने के लिए उपयोगी हैं:
यह भी देखें
- स्लाइड नियम
संदर्भ
- Prosthaphaeresis and beat phenomenon in the theory of vibrations, by Nicholas J. Rose
- ↑ Pierce, R. C., Jr. (January 1977). "लघुगणक का एक संक्षिप्त इतिहास". The Two-Year College Mathematics Journal. Mathematical Association of America. 8 (1): 22–26. doi:10.2307/3026878. JSTOR 3026878.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Prosthaphaeresis, by Brian Borchers