मर्क्युरी-आर्क वाल्व

From Vigyanwiki
Revision as of 19:04, 28 July 2022 by alpha>Sweta
स्विट्जरलैंड में बेरोमुएनस्टर एएम ट्रांसमीटर में प्रदर्शन पर मर्करी रेक्टिफायर, डिकोमिशन होने से पहले।छह एनोड के साथ तीन-चरण पूर्ण-लहर रेक्टिफायर।

एक पारा-आर्क वाल्व या पारा-वाष्प दिष्टकारी या (यूके) पारा-आर्क दिष्टकारी[1][2] एक प्रकार का विद्युत दिष्टकारी है जिसका उपयोग उच्च- वोल्टेज या उच्च- धारा प्रत्यावर्ती धारा (एसी) को प्रत्यक्ष धारा (डीसी) में परिवर्तित करने के लिए किया जाता है। यह एक प्रकार की ठंडी कैथोड गैस से भरी ट्यूब है, लेकिन इसमें असामान्य है कि कैथोड ठोस के बजाय तरल पारा के रूप में है और इसलिए स्वयं को पुनर्स्थापित कर रहा है। परिणाम स्वरूप, पारा-आर्क वाल्व अधिक कठोर और लंबे समय तक चलने वाले थे और अधिकांश अन्य प्रकार के गैस निर्वहन नलियों की तुलना में बहुत अधिक धाराएं ले सकते थे।

पीटर कूपर हेविट द्वारा 1902 में आविष्कार किया गया, पारा-आर्क रेक्टिफायर्स का उपयोग औद्योगिक मोटर्स, इलेक्ट्रिक रेलवे, स्ट्रीटकार और इलेक्ट्रिक लोकोमोटिव के साथ-साथ रेडियो ट्रांसमीटर और हाई-वोल्टेज डायरेक्ट करंट (HVDC) पावर ट्रांसमिशन के लिए बिजली प्रदान करने के लिए किया जाता है। 1970 के दशक में डायोड, थाइरिस्टर और गेट टर्न-ऑफ थाइरिस्टर (जीटीओ) जैसे अर्धचालक संशोधक के आने से पहले वे उच्च शक्ति सुधार की प्राथमिक विधि थे। इन सॉलिड स्टेट रेक्टिफायर्स ने अपनी उच्च विश्वसनीयता, कम लागत, रखरखाव और कम पर्यावरणीय जोखिम के कारण पारा-आर्क रेक्टिफायर को पूरी तरह से बदल दिया है।[3]

इतिहास

कूपर हेविट द्वारा निर्मित पहले मर्करी आर्क बल्बों में से एक

1882 में जेमिन और मेन्यूवियर ने मर्करी आर्क के सुधारात्मक गुणों का अवलोकन किया। [4] मर्करी आर्क रेक्टिफायर का आविष्कार 1902 में पीटर कूपर हेविट द्वारा किया गया था आगे 1920 और 1930 के दशक में यूरोप और उत्तरी अमेरिका दोनों में शोधकर्ताओं द्वारा विकसित किया गया था। इसके आविष्कार से पहले, प्रत्यक्ष धारा (डीसी) में उपयोगिताओं द्वारा प्रदान की गई प्रत्यावर्ती धारा (एसी) को परिवर्तित करने का एकमात्र तरीका महंगा, अक्षम और उच्च रखरखाव रोटरी कन्वर्टर्स या मोटर-जनरेटर सेट का उपयोग करके था। मर्करी-आर्क रेक्टिफायर्स या "कन्वर्टर्स" का उपयोग स्टोरेज बैटरी, आर्क लाइटिंग सिस्टम,[5] ट्रॉलीबस, ट्राम और सबवे के लिए डीसी ट्रैक्शन मोटर्स और इलेक्ट्रोप्लेटिंग उपकरण चार्ज करने के लिए किया जाता था।1970 के दशक में पारा रेक्टिफायर का अच्छी तरह से उपयोग किया गया था, तब इसे अंततः अर्धचालक संशोधक द्वारा बदल दिया गया था।

संचालन सिद्धान्त

1940 के दशक से ग्लास-बल्ब पारा-आर्क रेक्टिफायर

रेक्टिफायर का संचालन बहुत कम दबाव पर पारा वाष्प युक्त एक सीलबंद आवरण में इलेक्ट्रोड के बीच एक विद्युत चाप के निर्वहन पर निर्भर करता है। तरल पारा का पूल एक स्व-नवीनीकरण कैथोड के रूप में कार्य करता है जो समय के साथ खराब नहीं होता है। तरल पारा का पूल एक स्व-नवीनीकरण कैथोड के रूप में कार्य करता है जो समय के साथ खराब नहीं होता है। पारा स्वतंत्र रूप से इलेक्ट्रॉनों का उत्सर्जन करता है, जबकि कार्बन एनोड गर्म होने पर भी बहुत कम इलेक्ट्रॉनों का उत्सर्जन करता है, इसलिए इलेक्ट्रॉनों की धारा केवल एक दिशा में कैथोड से एनोड तक ट्यूब से गुजर सकती है, जो ट्यूब को प्रत्यावर्ती धारा (एसी) को ठीक करने की अनुमति देती है।

जब आर्क बनता है, तो पूल की सतह से इलेक्ट्रॉनों का उत्सर्जन होता है, जिससे पारा वाष्प का आयनीकरण एनोड की ओर हो जाता है। पारा आयन कैथोड की ओर आकर्षित होते हैं, और पूल के परिणामस्वरूप आयनिक बमबारी उत्सर्जन स्थल के तापमान को तब तक बनाए रखती है जब तक कि कुछ एम्पीयर (A) की धारा जारी रहती है।

जबकि करंट को इलेक्ट्रॉनों द्वारा ले जाया जाता है, कैथोड में लौटने वाले सकारात्मक आयन अंतरिक्ष चार्ज प्रभावों से काफी हद तक अप्रभावित होने की अनुमति देते हैं जो वैक्यूम ट्यूबों के प्रदर्शन को सीमित करते हैं। नतीजतन, वाल्व कम आर्क वोल्टेज (आमतौर पर 20-30) पर उच्च धाराएं ले सकता है वी) और इसलिए एक कुशल सुधारक है। हॉट-कैथोड, गैस डिस्चार्ज ट्यूब जैसे थायराट्रॉन भी दक्षता के समान स्तर प्राप्त कर सकते हैं लेकिन गर्म कैथोड फिलामेंट्स नाजुक होते हैं और उच्च प्रवाह पर उपयोग किए जाने पर कम परिचालन जीवन होता है।

आवरण के तापमान को सावधानीपूर्वक नियंत्रित किया जाना चाहिए, क्योंकि चाप का व्यवहार बड़े पैमाने पर पारा के वाष्प दबाव से निर्धारित होता है, जो बदले में बाड़े की दीवार पर सबसे ठंडे स्थान द्वारा निर्धारित किया जाता है। एक विशिष्ट डिजाइन 40 °से. (104 °फ़ै) . पर तापमान बनाए रखता है और पारा वाष्प दाब 7 मिलीपास्कल

पारा आयन विशिष्ट तरंग दैर्ध्य पर प्रकाश उत्सर्जित करते हैं, जिसकी सापेक्ष तीव्रता वाष्प के दबाव से निर्धारित होती है। रेक्टिफायर के भीतर कम दबाव पर, प्रकाश हल्का नीला-बैंगनी दिखाई देता है और इसमें बहुत अधिक पराबैंगनी प्रकाश होता है।

निर्माण

पारा आर्क वाल्व का निर्माण दो बुनियादी रूपों ग्लास-बल्ब प्रकार और स्टील-टैंक प्रकार में से किसी एक से होता है। स्टील-टैंक वाल्व का उपयोग लगभग 500 एम्पियर (A) से ऊपर की उच्च वर्तमान रेटिंग के लिए किया गया था।

ग्लास-बल्ब वाल्व

एक ग्लास-लिफहोल पारा-आर्क रेक्टिफायर वाल्व

पारा वाष्प इलेक्ट्रिक रेक्टिफायर के शुरुआती प्रकार में कैथोड के रूप में नीचे बैठे तरल पारा के पूल के साथ एक खाली ग्लास बल्ब होता है।[6] इसके ऊपर कांच के बल्ब को घुमाया जाता है, जो पारा को संघनित करता है जो उपकरण के संचालन के दौरान वाष्पित हो जाता है। कांच के लिफाफे में एनोड के रूप में ग्रेफाइट की छड़ों के साथ एक या एक से अधिक भुजाएँ होती हैं। उनकी संख्या आवेदन पर निर्भर करती है, आमतौर पर प्रति चरण एक एनोड प्रदान किया जाता है। एनोड आर्म्स का आकार सुनिश्चित करता है कि कांच की दीवारों पर संघनित कोई भी पारा कैथोड और संबंधित एनोड के बीच एक प्रवाहकीय पथ प्रदान करने से बचने के लिए जल्दी से मुख्य पूल में वापस चला जाता है।

ग्लास आवरण रेक्टिफायर एक इकाई में सैकड़ों किलोवाट प्रत्यक्ष-वर्तमान बिजली को संभाल सकता है। 150 एम्पीयर (A) रेटेड छह-चरण के रेक्टिफायर में एक कांच का आवरण होता है जो लगभग 600 मिमी (24 इंच) ऊँचे 300 मिमी (12 इंच) व्यास के बाहर होता है। इन रेक्टिफायर में कई किलोग्राम तरल पारा होगा। कांच की कम तापीय चालकता के कारण आवरण के बड़े आकार की आवश्यकता होती है। आवरण के ऊपरी भाग में पारा वाष्प को कांच के आवरण के माध्यम से गर्मी को समाप्त करना चाहिए ताकि संघनित हो और कैथोड पूल में वापस आ जाए। तापमान को बेहतर ढंग से नियंत्रित करने के लिए कुछ कांच की नलियों को तेल में डुबोया गया।

ग्ग्लास-बल्ब रेक्टिफायर की वर्तमान-वहन क्षमता आंशिक रूप से कांच के आवरण की नाजुकता (जिसका आकार रेटेड शक्ति के साथ बढ़ जाती है) और आंशिक रूप से एनोड से कनेक्शन के लिए ग्लास लिफाफे में जुड़े तारों के आकार से सीमित होती है। कैथोड आवरण में हवा के रिसाव को रोकने के लिए उच्च-वर्तमान रेक्टिफायर के विकास के लिए थर्मल विस्तार के बहुत समान गुणांक वाले लीडवायर सामग्री और ग्लास की आवश्यकता होती है। 1930 के दशक के मध्य तक एम्पियर (A) तक की वर्तमान रेटिंग हासिल कर ली गई थी, लेकिन ऊपर की वर्तमान रेटिंग के लिए अधिक मजबूत स्टील-टैंक डिजाइन का उपयोग करके अधिकांश रेक्टिफायर्स का एहसास किया गया था।

स्टील-टैंक वाल्व

बड़े वाल्वों के लिए, इलेक्ट्रोड के लिए सिरेमिक इंसुलेटर के साथ एक स्टील टैंक का उपयोग किया जाता है, जिसमें अपूर्ण सील के आसपास टैंक में हवा के मामूली रिसाव का मुकाबला करने के लिए एक वैक्यूम पंप सिस्टम होता है। स्टील-टैंक वाल्व, टैंक के लिए पानी ठंडा करने के साथ, कई हजार एएमपीएस की वर्तमान रेटिंग के साथ विकसित किए गए थे।

ग्लास-बल्ब वाल्व की तरह, स्टील-टैंक पारा आर्क वाल्व प्रति टैंक केवल एक एनोड (एक प्रकार जिसे एक्सीट्रॉन के रूप में भी जाना जाता है) या प्रति टैंक कई एनोड के साथ बनाया गया था। बहु-एनोड वाल्व आमतौर पर बहु-चरण रेक्टिफायर सर्किट (2, 3, 6 या 12 एनोड प्रति टैंक के साथ) के लिए उपयोग किए जाते थे, लेकिन एचवीडीसी अनुप्रयोगों में, वर्तमान रेटिंग को बढ़ाने के लिए कई एनोड अक्सर समानांतर में जुड़े होते थे।

Cut-away model of early high-voltage steel-tank rectifier rated at 50 kV, 30 A
Cut-away model of early high-voltage steel-tank rectifier rated at 50 kV, 30 A


प्रारंभ (इग्निशन)

पारंपरिक पारा-आर्क रेक्टिफायर को कैथोड पूल और एक प्रारंभिक इलेक्ट्रोड के बीच, रेक्टिफायर के भीतर एक संक्षिप्त उच्च-वोल्टेज चाप द्वारा शुरू किया जाता है। प्रारंभिक इलेक्ट्रोड को पूल के संपर्क में लाया जाता है और एक प्रेरक सर्किट के माध्यम से वर्तमान को पारित करने की अनुमति दी जाती है। तब पूल के साथ संपर्क टूट जाता है, जिसके परिणामस्वरूप एक उच्च ईएमएफ और एक आर्क निर्वहन होता है।

शुरुआती इलेक्ट्रोड और पूल के बीच क्षणिक संपर्क कई तरीकों से प्राप्त किया जा सकता है, जिनमें शामिल हैं:

  • एक बाहरी इलेक्ट्रोमैग्नेट को इलेक्ट्रोड को पूल के संपर्क में खींचने की अनुमति देना; इलेक्ट्रोमैग्नेट प्रारंभिक अधिष्ठापन के रूप में भी काम कर सकता है,
  • एक छोटे रेक्टिफायर के बल्ब को टिप देने के लिए इलेक्ट्रोमैग्नेट की व्यवस्था करना, पूल से पारा को प्रारंभिक इलेक्ट्रोड तक पहुंचने की अनुमति देने के लिए पर्याप्त है,
  • दो पूलों के बीच पारे की एक संकीर्ण गर्दन प्रदान करना, और गर्दन के माध्यम से नगण्य वोल्टेज पर एक बहुत ही उच्च धारा को पार करके, मैग्नेटोस्ट्रिक्शन द्वारा पारा को विस्थापित करना, इस प्रकार सर्किट खोलना,
  • एक द्विधात्वीय पट्टी के माध्यम से पारा पूल में प्रवाहित करना, जो वर्तमान की ताप क्रिया के तहत गर्म होता है और इस तरह झुकता है जैसे कि पूल के साथ संपर्क टूट जाता है।

संदीपन

चूंकि कैथोड स्पॉट को क्षणिक रुकावट या आउटपुट करंट में कमी के कारण बुझाया जा सकता है, कई रेक्टिफायर्स प्लांट के उपयोग में होने पर आर्क को बनाए रखने के लिए एक अतिरिक्त इलेक्ट्रोड को शामिल करते हैं। आमतौर पर, कुछ एम्पीयर (A) (A) की दो या तीन चरण की आपूर्ति छोटे उत्तेजना एनोड के माध्यम से पारित की जाती है। कुछ सौ वीए रेटिंग के चुंबकीय रूप से पृथक ट्रांसफार्मर आमतौर पर इस आपूर्ति को प्रदान करने के लिए उपयोग किए जाते हैं।

यह संदीपन या कीप- अलाइव सर्किट सिंगल-फेज रेक्टिफायर्स जैसे कि एक्सीट्रॉन और रेडियोटेलीग्राफी ट्रांसमीटरों की उच्च-वोल्टेज आपूर्ति में उपयोग किए जाने वाले पारा-आर्क रेक्टिफायर के लिए आवश्यक था, क्योंकि मोर्स कुंजी जारी होने पर हर बार वर्तमान प्रवाह नियमित रूप से बाधित होता था।[7]


ग्रिड नियंत्रण

ग्लास और मेटल लिफाफा रेक्टिफायर दोनों में एनोड और कैथोड के बीच डाले गए कंट्रोल ग्रिड हो सकते हैं।

एनोड और पूल कैथोड के बीच एक नियंत्रण ग्रिड की स्थापना वाल्व के प्रवाहकत्त्व को नियंत्रित करने की अनुमति देती है, जिससे रेक्टिफायर द्वारा उत्पादित औसत आउटपुट वोल्टेज का नियंत्रण होता है। वर्तमान प्रवाह की शुरुआत में उस बिंदु से देरी हो सकती है जिस पर एक अनियंत्रित वाल्व में एक चाप बन जाएगा। यह एक वाल्व समूह के आउटपुट वोल्टेज को फायरिंग पॉइंट में देरी करके समायोजित करने की अनुमति देता है, और नियंत्रित पारा-आर्क वाल्व को एक इन्वर्टर में सक्रिय स्विचिंग तत्व होने की अनुमति देता है जो प्रत्यक्ष वर्तमान को प्रत्यावर्ती धारा में परिवर्तित करता है।

वाल्व को अचालक अवस्था में बनाए रखने के लिए, ग्रिड पर कुछ वोल्ट या दसियों वोल्ट का ऋणात्मक पूर्वाग्रह लगाया जाता है। नतीजतन, कैथोड से उत्सर्जित इलेक्ट्रॉनों को ग्रिड से दूर, कैथोड की ओर वापस खदेड़ दिया जाता है, और इसलिए एनोड तक पहुंचने से रोका जाता है। ग्रिड पर लागू एक छोटे से सकारात्मक पूर्वाग्रह के साथ, इलेक्ट्रॉन ग्रिड के माध्यम से, एनोड की ओर गुजरते हैं, और एक चाप निर्वहन स्थापित करने की प्रक्रिया शुरू हो सकती है। हालाँकि, एक बार चाप स्थापित हो जाने के बाद, इसे ग्रिड क्रिया द्वारा रोका नहीं जा सकता है, क्योंकि आयनीकरण द्वारा उत्पन्न धनात्मक पारा आयन ऋणात्मक रूप से आवेशित ग्रिड की ओर आकर्षित होते हैं और इसे प्रभावी रूप से बेअसर कर देते हैं। चालन को रोकने का एकमात्र तरीका यह है कि बाहरी सर्किट को करंट को (कम) क्रिटिकल करंट से नीचे गिराने के लिए मजबूर किया जाए।

हालांकि ग्रिड-नियंत्रित पारा-आर्क वाल्व ट्रायोड वाल्वों के लिए एक सतही समानता रखते हैं, पारा-आर्क वाल्व को वर्तमान के बेहद कम मूल्यों को छोड़कर, चाप को बनाए रखने के लिए आवश्यक महत्वपूर्ण वर्तमान के नीचे एम्पलीफायर के रूप में उपयोग नहीं किया जा सकता है।

एनोड ग्रेडिंग इलेक्ट्रोड

न्यूजीलैंड में एचवीडीसी इंटर-आइलैंड स्कीम में समानांतर में चार एनोड कॉलम के साथ एएसईए डिजाइन के पारा आर्क वाल्व।

मरकरी-आर्क वाल्व आर्क-बैक (या बैकफ़ायर) नामक प्रभाव के लिए प्रवण होते हैं, जिससे वाल्व विपरीत दिशा में संचालित होता है जब इसके पार वोल्टेज नकारात्मक होता है। आर्क-बैक वाल्व के लिए हानिकारक या विनाशकारी हो सकते हैं, साथ ही बाहरी सर्किट में उच्च शॉर्ट-सर्किट धाराएं बना सकते हैं, और उच्च वोल्टेज पर अधिक प्रचलित हैं। बैकफ़ायर के कारण होने वाली समस्याओं का एक उदाहरण 1960 में ग्लासगो उत्तर उपनगरीय रेलवे के विद्युतीकरण के बाद हुआ, जहाँ कई दुर्घटनाओं के बाद भाप सेवाओं को फिर से शुरू करना पड़ा। [8] कई वर्षों तक इस प्रभाव ने पारा-आर्क वाल्व के व्यावहारिक ऑपरेटिंग वोल्टेज को कुछ किलोवोल्ट तक सीमित कर दिया।

समाधान एनोड और नियंत्रण ग्रिड के बीच ग्रेडिंग इलेक्ट्रोड को शामिल करने के लिए पाया गया था, जो एक बाहरी अवरोधक - कैपेसिटर डिवाइडर सर्किट से जुड़ा था [9] डॉ. ऊनो लैम ने 1930 और 1940 के दशक में स्वीडन में एएसईए में इस समस्या पर अग्रणी काम किया, जिससे यह एचवीडीसी ट्रांसमिशन के लिए पहला सही मायने में व्यावहारिक पारा-आर्क वाल्व बन गया, जिसे मुख्य भूमि से 20 मेगावाट, 100 केवी एचवीडीसी से जोड़ा जा सकता है। लिंक को कनेक्ट करने के लिए डिज़ाइन किया गया था, लेकिन इसे 1954 में गोटलैंड द्वीप पर स्वीडन की सेवा में लगाया जाना था।

उच्च वोल्टेज पारा-आर्क वाल्व पर यूनो लैम के काम ने उन्हें "एचवीडीसी के पिता" पावर ट्रांसमिशन के रूप में जाना [10] और एचवीडीसी के क्षेत्र में उत्कृष्ट योगदान के लिए आईईईई (IEEE) को उनके नाम पर एक पुरस्कार समर्पित करने के लिए प्रेरित किया।

इस प्रकार के ग्रेडिंग इलेक्ट्रोड के साथ पारा चाप वाल्व 150 kV की वोल्टेज रेटिंग तक विकसित किए गए थेl हालांकि, ग्रेडिंग इलेक्ट्रोड को रखने के लिए आवश्यक लंबा चीनी मिट्टी के बरतन स्तंभ कैथोड क्षमता पर स्टील टैंक की तुलना में ठंडा करना अधिक कठिन था, इसलिए प्रयोग करने योग्य वर्तमान रेटिंग लगभग 200 – 300 एम्पीयर (A) (A) तक सीमित थी। इसलिए, एचवीडीसी के लिए पारा चाप वाल्व अक्सर समानांतर में चार या छह एनोड कॉलम के साथ बनाए जाते थे। एनोड कॉलम हमेशा एयर-कूल्ड होते थे, कैथोड टैंक या तो वाटर-कूल्ड या एयर-कूल्ड होते थे।

परिपथ (सर्किट)

सिंगल-फेज मरकरी-आर्क रेक्टिफायर्स का उपयोग शायद ही कभी किया जाता था क्योंकि करंट गिरने पर चाप को बुझाया जा सकता था और एसी वोल्टेज ने ध्रुवीयता को बदल दिया। सिंगल-फेज रेक्टिफायर द्वारा उत्पादित प्रत्यक्ष धारा में बिजली आपूर्ति आवृत्ति से दोगुने पर एक असतत घटक (लहर) होता है, जो डीसी के लिए कई अनुप्रयोगों में अवांछनीय था। समाधान दो, तीन या यहां तक कि छह-चरण एसी बिजली की आपूर्ति का उपयोग करना था ताकि सुधारा हुआ करंट अधिक स्थिर वोल्टेज स्तर बनाए रखे। पॉलीफ़ेज़ रेक्टिफायर्स आपूर्ति प्रणाली पर भार को भी संतुलित करते हैं, जो सिस्टम के प्रदर्शन और अर्थव्यवस्था के कारणों के लिए वांछनीय है।

रेक्टिफायर के लिए पारा-आर्क वाल्व के अधिकांश अनुप्रयोगों ने प्रत्येक चरण के लिए एनोड के अलग-अलग जोड़े के साथ पूर्ण-लहर सुधार का उपयोग किया।

पूर्ण-लहर के सुधार में एसी तरंग के दोनों हिस्सों का उपयोग किया जाता है। कैथोड डीसी लोड के + पक्ष से जुड़ा हुआ है, दूसरा पक्ष ट्रांसफॉर्मर सेकेंडरी वाइंडिंग के सेंटर टैप से जुड़ा हुआ है, जो हमेशा जमीन या पृथ्वी के संबंध में शून्य क्षमता पर रहता है। प्रत्येक एसी चरण के लिए, उस चरण घुमावदार के प्रत्येक छोर से एक तार पारा-आर्क रेक्टिफायर पर एक अलग एनोड आर्म से जुड़ा होता है। जब प्रत्येक एनोड पर वोल्टेज सकारात्मक हो जाता है, तो यह कैथोड से पारा वाष्प के माध्यम से आचरण करना शुरू कर देगा। चूंकि प्रत्येक एसी चरण के एनोड्स को सेंटर टैप ट्रांसफॉर्मर वाइंडिंग के विपरीत छोरों से खिलाया जाता है, एक हमेशा केंद्र के नल के संबंध में सकारात्मक होगा और एसी वेवफॉर्म के दोनों हिस्सों को लोड के माध्यम से केवल एक दिशा में प्रवाह करने का कारण होगा। पूरे एसी तरंग के इस सुधार को इस प्रकार पूर्ण-लहर सुधार कहा जाता है।

तीन-चरण वैकल्पिक वर्तमान और पूर्ण-लहर सुधार के साथ, छह एनोड का उपयोग एक चिकनी प्रत्यक्ष वर्तमान प्रदान करने के लिए किया गया था। तीन चरण के ऑपरेशन ट्रांसफार्मर की दक्षता में सुधार कर सकते हैं और साथ ही दो एनोड को एक साथ संचालित करने के लिए चिकनी डीसी करंट प्रदान कर सकते हैं। ऑपरेशन के दौरान, आर्क उच्चतम सकारात्मक क्षमता (कैथोड के संबंध में) पर एनोड को स्थानांतरित करता है।

Three-phase half-wave rectifier with three anodes and external transformer
Three-phase half-wave rectifier with three anodes and external transformer
Three-phase full-wave rectifier with six anodes and three-phase external transformer with centre-tap on secondary side
Three-phase full-wave rectifier with six anodes and three-phase external transformer with centre-tap on secondary side

एचवीडीसी अनुप्रयोगों में, एक पूर्ण-लहर तीन-चरण पुल रेक्टिफायर या ग्रेट्ज़-ब्रिज सर्किट का उपयोग आमतौर पर किया जाता था, प्रत्येक वाल्व एक ही टैंक में समायोजित किया जाता है।

अनुप्रयोग

जैसा कि 1920 के दशक में सॉलिड-स्टेट मेटल रेक्टिफायर्स लो-वोल्टेज रेक्टिफिकेशन के लिए उपलब्ध हो गए, पारा चाप ट्यूब उच्च वोल्टेज और विशेष रूप से उच्च-शक्ति अनुप्रयोगों तक सीमित हो गए।

ड़े औद्योगिक उपयोगों के लिए प्रत्यावर्ती धारा को प्रत्यक्ष धारा में बदलने के लिए 1960 के दशक तक मर्करी-आर्क वाल्व का व्यापक रूप से उपयोग किया जाता था। अनुप्रयोगों में बड़े रेडियो ट्रांसमीटरों के लिए स्ट्रीटकार, इलेक्ट्रिक रेलवे और चर-वोल्टेज बिजली की आपूर्ति के लिए बिजली की आपूर्ति शामिल थी। 1950 के दशक तक शहरी केंद्रों में विरासत में मिली एडिसन -शैली डीसी पावर ग्रिड को डीसी पावर प्रदान करने के लिए मर्करी-आर्क स्टेशनों का उपयोग किया जाता था। 1960 के दशक में, सॉलिड-स्टेट सिलिकॉन डिवाइस, पहले डायोड और फिर थाइरिस्टर, ने पारा आर्क ट्यूब के सभी लो-पावर और लो वोल्टेज रेक्टिफायर अनुप्रयोगों को बदल दिया।

न्यू हेवन ईपी 5 और वर्जिनियन ईएल-सी सहित कई इलेक्ट्रिक इंजनों में आने वाले एसी से ट्रैक्शन मोटर डीसी को सुधारने के लिए बोर्ड पर इग्निट्रॉन थे।

एक 150-किलोवोल्ट, 1800 एएमपी मर्करी-आर्क वाल्व मैनिटोबा हाइड्रो के रेडिसन कनवर्टर स्टेशन, अगस्त 2003 में

मर्करी आर्क वाल्व के अंतिम प्रमुख उपयोगों में से एक एचवीडीसी पावर ट्रांसमिशन में था, जहां वे 1970 के दशक तक कई परियोजनाओं में उपयोग किए गए थे, जिसमें न्यूजीलैंड के उत्तर और दक्षिण द्वीपों और एचवीडीसी किंग्सन्थ लिंक के बीच एचवीडीसी इंटर-आइलैंड लिंक शामिल था। लंदन के लिए किंग्सन्थ पावर स्टेशन।[11] हालांकि, लगभग 1975 से, सिलिकॉन उपकरणों ने पारा-आर्क रेक्टिफायर्स को काफी हद तक अप्रचलित बना दिया है, यहां तक कि एचवीडीसी अनुप्रयोगों में भी। इंग्लिश इलेक्ट्रिक द्वारा निर्मित अब तक के सबसे बड़े मरकरी-आर्क रेक्टिफायर्स को 150 . पर रेट किया गया था केवी, 1800 ए और 2004 तक नेल्सन नदी डीसी ट्रांसमिशन सिस्टम हाई-वोल्टेज डीसी-पावर-ट्रांसमिशन प्रोजेक्ट में उपयोग किए गए थे। इंटर-आइलैंड और किंग्सनॉर्थ परियोजनाओं के लिए वाल्व समानांतर में चार एनोड कॉलम का इस्तेमाल करते थे, जबकि नेल्सन नदी परियोजना के लिए आवश्यक वर्तमान रेटिंग प्राप्त करने के लिए समानांतर में छह एनोड कॉलम का इस्तेमाल किया गया था। [12]इंटर-आइलैंड लिंक पारा चाप वाल्व का उपयोग करते हुए संचालन में अंतिम एचवीडीसी ट्रांसमिशन योजना थी। इसे औपचारिक रूप से 1 अगस्त 2012 को हटा दिया गया था। न्यूजीलैंड योजना के पारा चाप वाल्व कनवर्टर स्टेशनों को नए थाइरिस्टर कनवर्टर स्टेशनों द्वारा प्रतिस्थापित किया गया था। एक समान पारा चाप वाल्व योजना, एचवीडीसी वैंकूवर द्वीप लिंक को तीन-चरण एसी लिंक से बदल दिया गया था।

कुछ दक्षिण अफ्रीकी खानों और केन्या में (मोम्बासा पॉलिटेक्निक - इलेक्ट्रिकल और इलेक्ट्रॉनिक्स विभाग) में मर्करी आर्क वाल्व का उपयोग किया जाता है।

लंदन अंडरग्राउंड पर डीसी पावर सिस्टम्स में पारा आर्क वाल्व का बड़े पैमाने पर उपयोग किया गया था,[13] और दो को अभी भी 2000 में लंदन के गहरे स्तर के आश्रयों में संचालन में देखा गया था।[14] आश्रयों के रूप में अब उनकी आवश्यकता नहीं होने के बाद, बेलसाइज पार्क और कई अन्य गहरे आश्रयों को सुरक्षित भंडारण के रूप में उपयोग किया जाता था, खासकर संगीत और टेलीविजन अभिलेखागार के लिए। इसने गुडगे स्ट्रीट शेल्टर में पारा-आर्क रेक्टिफायर का नेतृत्व किया, जिसमें डॉक्टर हू के एक प्रारंभिक एपिसोड की विशेषता थी, जो एक विदेशी मस्तिष्क के रूप में अपनी "भयानक चमक" के लिए डाली गई थी।[15]

अन्य

विशेष प्रकार के सिंगल-फेज पारा-आर्क रेक्टिफायर इग्निट्रॉन और एक्सीट्रॉन (Excitron) हैं। एक्सीट्रॉन (Excitron) ऊपर वर्णित अन्य प्रकार के वाल्व के समान है, लेकिन आधे चक्र के दौरान एक चाप निर्वहन को बनाए रखने के लिए उत्तेजना एनोड के अस्तित्व पर गंभीर रूप से निर्भर करता है जब वाल्व चालू नहीं होता है। हर बार चालन शुरू करने के लिए इग्निट्रॉन चाप को प्रज्वलित करके उत्तेजना एनोड के साथ वितरण करता है। इस तरह, इग्निट्रॉन नियंत्रण ग्रिड की आवश्यकता से भी बचते हैं।

1919 में, टेलीफोनी और टेलीग्राफी वॉल्यूम की पुस्तक साइक्लोपीडिया1[16] टेलीफोन संकेतों के लिए एक एम्पलीफायर का वर्णन किया गया जो एक पारा रेक्टिफायर ट्यूब में एक चाप को संशोधित करने के लिए एक चुंबकीय क्षेत्र का उपयोग करता है। यह कभी भी व्यावसायिक रूप से महत्वपूर्ण नहीं था।

लंबी दूरी के टेलीफोन सर्किट पर उपयोग के लिए एक प्रयोगात्मक पारा चाप एम्पलीफायर।ऑडियन ट्यूब के विकास के बाद इसका कभी भी व्यावसायिक रूप से उपयोग नहीं किया गया था।


पर्यावरणीय खतरा

पारा यौगिक विषाक्त हैं, पर्यावरण में अत्यधिक लगातार बने रहते हैं, और मनुष्यों और पर्यावरण के लिए एक खतरा पेश करते हैं। नाजुक कांच के लिफाफे में बड़ी मात्रा में पारा का उपयोग पर्यावरण के लिए पारा की संभावित रिहाई का खतरा प्रस्तुत करता है, कांच के बल्ब को तोड़ा जाना चाहिए।कुछ HVDC कनवर्टर स्टेशनों को अपने सेवा जीवन पर स्टेशन से उत्सर्जित पारा के निशान को खत्म करने के लिए व्यापक सफाई की आवश्यकता है। स्टील टैंक रेक्टिफायर में अक्सर वैक्यूम पंपों की आवश्यकता होती है, जो लगातार पारा वाष्प की छोटी मात्रा में उत्सर्जित होते हैं।

संदर्भ

  1. Electrical Year Book 1937, Emmott and Company, Manchester, England, pp 180-185
  2. Rissik, H., Mercury-Arc Current Converters, Pitman. 1941.
  3. "History | IEEE Power & Energy Magazine". magazine.ieee-pes.org. Retrieved 17 January 2017.
  4. Power Electronics. January 2004. ISBN 9788120323964.
  5. I.C.S. Reference Library volume 4B, International Textbook Company, Scranton PA 1908, section 53, page 34.
  6. Howatson A H (1965). "8". An Introduction to Gas Discharges. Oxford: Pergamon Press. ISBN 0-08-020575-5.
  7. Francis Edward Handy (1926). The Radio Amateur's Handbook (1st ed.). Hartford, CT: American Radio Relay League. pp. 78–81.
  8. "MoT Failures" (PDF). www.railwaysarchive.co.uk. Retrieved 2019-12-29.
  9. Cory, B.J.; Adamson, C.; Ainsworth, J.D.; Freris, L.L.; Funke, B.; Harris, L.A.; Sykes, J.H.M. (1965). "Chapter 2". High voltage direct current converters and systems. Macdonald & Co. Ltd.
  10. Gould, William R. (1992). "August Uno Lamm". Memorial Tributes. Vol. 5. National Academy of Engineering. doi:10.17226/1966. ISBN 978-0-309-04689-3. Retrieved August 24, 2005.
  11. Calverley T.E., Gavrilovic, A., Last F.H., Mott C.W., The Kingsnorth-Beddington-Willesden DC Link, CIGRE session, Paris, 1968.
  12. Cogle, T.C.J, The Nelson River Project - Manitoba Hydro exploits sub-arctic hydro power resources, Electrical Review, 23 November 1973.
  13. London Transport in 1955, p. 43, London Transport Executive, 1956 OCLC 867841889
  14. Catford, Nick (27 January 2000). "Belsize Park Deep Shelter-sb". Subterranea Britannica. Archived from the original on 9 May 2020. Retrieved 9 May 2020.
  15. Antony Clayton, Subterranean City: Beneath the Streets of London, p. 146, Historical Publications, 2000 ISBN 0948667699.
  16. The Project Gutenberg EBook of Cyclopedia of Telephony & Telegraphy Vol. 1


अग्रिम पठन

]