कतारबद्ध सिद्धांत
कतारबद्ध सिद्धांत प्रतीक्षा रेखाओं या कतारों का गणितीय अध्ययन है।[1] कतार की लंबाई और प्रतीक्षा समय का कतारबद्ध मॉडल के द्वारा अनुमान लगाया जा सकता है।[1] कतारबद्ध सिद्धांत को आमतौर पर संचालन अनुसंधान की एक शाखा माना जाता है क्योंकि परिणाम अक्सर उपयोग किए जाते हैं जब एक सेवा प्रदान करने के लिए आवश्यक संसाधनों के बारे में व्यावसायिक निर्णय लेते हैं।
कतारबद्ध सिद्धांत की उत्पत्ति एगनेर क्रूप एर्लंग द्वारा शोध में हुई है जब उन्होंने कोपेनहेगन टेलीफोन एक्सचेंज कंपनी, एक डेनिश कंपनी की प्रणाली का वर्णन करने के लिए मॉडल बनाए।[1] विचारों ने तब से दूरसंचार, यातायात अभियांत्रिकी, अभिकलन,[2] और विशेष रूप से औद्योगिक अभियांत्रिकी में, कारखानों, दुकानों, कार्यालयों और अस्पतालों के प्रारुप के साथ-साथ परियोजना प्रबंधन में अनुप्रयोगों को देखा है।[3][4]
वर्तनी
"कतार" की वर्तनी आमतौर पर सैद्धांतिक शोध क्षेत्र में "कतार" ही होती है। वास्तव में, क्षेत्र की प्रमुख पत्रिकाओं में से एक कतारबद्ध प्रणाली है।
एकल कतारबद्ध नोड्स
एक कतार, या कतारबद्ध नोड को लगभग एक ब्लैक बॉक्स माना जा सकता है। नौकरियां या "ग्राहक" कतार में आते हैं, संभवतः कुछ समय प्रतीक्षा करते हैं, संसाधित होने में कुछ समय लेते हैं, और फिर कतार से प्रस्थान करते हैं।
कतारबद्ध नोड बहुत शुद्ध ब्लैक बॉक्स नहीं है, हालांकि, चूंकि कतारबद्ध नोड के भीतर की कुछ जानकारी की आवश्यकता है। कतार में एक या एक से अधिक सर्वर होते हैं, जिनमें से प्रत्येक को आने वाली नौकरी के साथ जोड़ा जा सकता है, जब तक कि यह प्रस्थान नहीं करता है, जिसके बाद वह सर्वर किसी अन्य आने वाली नौकरी के साथ जोड़े जाने के लिए स्वतंत्र होगा।
सुपरमार्केट में श्रोता प्रायः सादृश्य का उपयोग करता है। अन्य मॉडल हैं, लेकिन यह सामान्यतः साहित्य में पाया जाता है। ग्राहक आते हैं, श्रोता द्वारा संसाधित होते हैं, और प्रस्थान करते हैं। प्रत्येक श्रोता एक समय में एक ग्राहक को संसाधित करता है, और इसलिए यह केवल एक सर्वर के साथ एक कतारबद्ध नोड है। एक परिस्थिति जहां ग्राहक के आने पर, श्रोता व्यस्त होने पर, ग्राहक शीघ्र निकल जाएगा, जिसे बिना किसी प्रतिरोध (या कोई प्रतीक्षा क्षेत्र, या इसी तरह की शर्तों) के साथ कतार के रूप में संदर्भित किया जाता है। अधिकतम n ग्राहकों के लिए प्रतीक्षा क्षेत्र वाली परिस्थिति को n विस्तार के प्रतिरोध वाली कतार कहा जाता है।
जन्म-मृत्यु प्रक्रिया
एक एकल कतार के व्यवहार (जिसे एक कतारबद्ध नोड भी कहा जाता है) का वर्णन एक जन्म -मृत्यु प्रक्रिया द्वारा किया जा सकता है, जो कतार से आगमन और प्रस्थान का वर्णन करता है, साथ ही नौकरियों की संख्या (जिसे "ग्राहक" या "अनुरोध" भी कहा जाता है, या अन्य वस्तुओं की कोई संख्या, क्षेत्र के आधार पर) वर्तमान में प्रणाली में हैं। एक आगमन से नौकरियों की संख्या को 1 से बढ़ती है, और एक प्रस्थान (अपनी सेवा को पूरा करने वाली नौकरी) k को 1 से घटाता है।
संतुलन समीकरण
जन्म-मृत्यु प्रक्रिया के लिए स्थिर अवस्था समीकरण, जिसे संतुलन समीकरण कहा जाता है, निम्नलिखित है। यहां अवस्था n में होने की स्थिर अवस्था प्रायिकता है।
पहले दो समीकरणों का तात्पर्य,
तथा
गणितीय अनुगम द्वारा,
स्थिति फलस्वरूप,
जो, साथ में समीकरण के साथ , पूरी तरह से आवश्यक स्थिर अवस्था प्रायिकताओं का वर्णन करता है।
केंडल का अंकन
एकल कतारबद्ध नोड्स को सामान्यतः ए/एस/सी (A/S/c) के रूप में केंडल के अंकन का उपयोग करके वर्णित किया जाता है, जहां ए (A) कतार में प्रत्येक आगमन के बीच अवधि के वितरण का वर्णन करता है, एस (S) नौकरियों के लिए सेवा समय का वितरण और सी (c) नोड पर सर्वर की संख्या वर्णन करता है।[5][6] अंकन के एक उदाहरण के लिए, एम/एम/1 (M/M/1) कतार एक सरल मॉडल है जहां एक एकल सर्वर पॉइसन प्रक्रिया (जहां अंतर-आगमन अवधि को तेजी से वितरित किया जाता है) के अनुसार आने वाली नौकरियों पर काम करता है और तेजी से वितरित सेवा समय (एम एक मार्कोव प्रक्रिया को दर्शाता है) होता है। एम/जी/1 (M/G/1) कतार में, जी (G) "सामान्य", और सेवा समय के लिए स्वेच्छाचारी प्रायिकता वितरण को इंगित करता है।
एम/एम/1 कतार का उदाहरण विश्लेषण
एक सर्वर और निम्नलिखित विशेषताओं के साथ एक कतार पर विचार करें:
- λ: आगमन दर (आने वाले प्रत्येक ग्राहक के बीच अपेक्षित समय का पारस्परिक, उदाहरण के लिए प्रति सेकंड 10 ग्राहक)
- μ: औसत सेवा समय का व्युत्क्रम (एक ही इकाई समय में लगातार सेवा पूर्ण होने की अपेक्षित संख्या, उदाहरण के लिए प्रति 30 सेकंड)
- n: प्रणाली में ग्राहकों की संख्या को चिह्नित करने वाला पैरामीटर
- : स्थिर अवस्था में प्रणाली में n ग्राहक होने की प्रायिकता।
इसके अलावा, En को प्रणाली द्वारा अवस्था n में प्रवेश करने की संख्या का प्रतिनिधित्व करने दें, और Ln प्रणाली द्वारा अवस्था n को छोड़ने की संख्या का प्रतिनिधित्व करता है। तब सभी n के लिए, |En − Ln| ∈ {0, 1}। अर्थात्, प्रणाली द्वारा किसी अवस्था को छोड़ने की संख्या उस अवस्था में प्रवेश करने की संख्या से अधिकतम 1 से भिन्न होती है, क्योंकि यह या तो भविष्य में किसी समय उस स्थिति में वापस आ जाएगी (En = Ln) या नहीं (En − Ln = 1)।
जब सिस्टम स्थिर स्थिति में आता है, तो आगमन दर प्रस्थान दर के बराबर होनी चाहिए।
इस प्रकार संतुलन समीकरण,
अर्थातl,
यह तथ्य कि ज्यामितीय वितरण सूत्र की ओर ले जाता है
जहां
सरल दो-समीकरण कतार
एक सामान्य बुनियादी कतार प्रणाली का श्रेय एरलांग को दिया जाता है, और लिटिल के नियम का एक संशोधन है। आगमन दर λ को देखते हुए, एक ड्रॉपआउट दर, और एक प्रस्थान दर μ, कतार एल की लंबाई के रूप में परिभाषित किया गया है:
दरों के लिए एक घातीय वितरण को मानते हुए, प्रतीक्षा समय डब्ल्यू को आगमन के अनुपात के रूप में परिभाषित किया जा सकता है जो परोसा जाता है।यह उन लोगों की घातीय उत्तरजीविता दर के बराबर है जो प्रतीक्षा अवधि में नहीं छोड़ते हैं, दे रहे हैं:
दूसरा समीकरण आमतौर पर फिर से लिखा जाता है:
महामारी विज्ञान में दो-चरण एक-बॉक्स मॉडल आम है।[7]
सिद्धांत के विकास का अवलोकन
1909 में, कोपेनहेगन टेलीफोन एक्सचेंज के लिए काम करने वाले डेनिश इंजीनियर एगनेर क्रूप एर्लंग ने पहला पेपर प्रकाशित किया, जिसे अब क्यूइंग थ्योरी कहा जाएगा।[8][9][10]उन्होंने एक पॉइसन प्रक्रिया द्वारा एक एक्सचेंज में आने वाले टेलीफोन कॉल की संख्या को मॉडल किया और 1917 में एम/डी/1 कतार को हल किया और 1920 में एम/डी/के कतार | M/D/K कतार मॉडल।[11]केंडल की संकेतन में:
- एम मार्कोव या मेमोरीलेस के लिए खड़ा है और इसका मतलब है कि एक पॉइसन प्रक्रिया के अनुसार आगमन होता है;
- डी का अर्थ है नियतात्मक और मतलब है कि कतार में आने वाली नौकरियां जिन्हें सेवा की एक निश्चित राशि की आवश्यकता होती है;
- k कतार में नोड (k = 1, 2, ...) पर सर्वर की संख्या का वर्णन करता है।
यदि नोड पर अधिक नौकरियां हैं, तो सर्वर हैं, तो नौकरियां कतार में हैं और सेवा की प्रतीक्षा करेंगी
M/g/1 | m/g/1 कतार को 1930 में फेलिक्स पोलाकज़ेक द्वारा हल किया गया था,[12]एक समाधान बाद में अलेक्जेंड्र खिनचिन द्वारा संभाव्य शब्दों में फिर से शुरू होता है और अब इसे पोलाकज़ेक -खिनचीन फॉर्मूला के रूप में जाना जाता है।[11][13]
1940 के दशक के बाद कतारबद्ध सिद्धांत गणितज्ञों के लिए अनुसंधान रुचि का एक क्षेत्र बन गया।[13]1953 में डेविड जॉर्ज केंडल ने जीआई/एम/के कतार को हल किया[14]और कतारों के लिए आधुनिक संकेतन पेश किया, जिसे अब केंडल के संकेतन के रूप में जाना जाता है।1957 में पोलाकज़ेक ने एक अभिन्न समीकरण का उपयोग करके जीआई/जी/1 का अध्ययन किया।[15]जॉन किंगमैन ने जी/जी/1 कतार: किंगमैन के फॉर्मूला में माध्य प्रतीक्षा समय के लिए एक सूत्र दिया।[16]
लियोनार्ड क्लेनक्रॉक ने 1960 के दशक की शुरुआत में संदेश स्विचिंग और 1970 के दशक की शुरुआत में पैकेट स्विचिंग के लिए कतारबद्ध सिद्धांत के आवेदन पर काम किया।इस क्षेत्र में उनका प्रारंभिक योगदान 1962 में मैसाचुसेट्स इंस्टीट्यूट ऑफ टेक्नोलॉजी में उनकी डॉक्टरेट थीसिस था, 1964 में पुस्तक रूप में प्रकाशित हुआ। 1970 के दशक की शुरुआत में प्रकाशित उनके सैद्धांतिक काम ने इंटरनेट पर एक अग्रदूत, अरपनेट में पैकेट स्विचिंग के उपयोग को रेखांकित किया।
मैट्रिक्स ज्यामितीय विधि और मैट्रिक्स विश्लेषणात्मक तरीकों ने चरण-प्रकार के वितरण के साथ कतार की अनुमति दी है। चरण-प्रकार वितरित अंतर-आगमन और सेवा समय वितरण पर विचार किया जाना है।[17]
युग्मित कक्षाओं के साथ सिस्टम वायरलेस नेटवर्क और सिग्नल प्रोसेसिंग के लिए आवेदन में कतारबद्ध सिद्धांत में एक महत्वपूर्ण हिस्सा हैं। [18] M/g/k कतार के लिए प्रदर्शन मेट्रिक्स जैसी समस्याएं | m/g/k कतार एक खुली समस्या बनी हुई है।[11][13]
सेवा अनुशासन
विभिन्न शेड्यूलिंग नीतियों का उपयोग कतार में नोड्स पर किया जा सकता है:
- पहले से पहले
- जिसे पहला-आओ भी कहा जाता है, प्रथम-सर्व किया गया (FCFS),[19]इस सिद्धांत में कहा गया है कि ग्राहकों को एक समय में एक परोसा जाता है और जो ग्राहक सबसे लंबे समय तक इंतजार कर रहा है, उसे पहले परोसा जाता है।[20]
- पहले से बाहर
- यह सिद्धांत एक समय में ग्राहकों को भी सेवा देता है, लेकिन सबसे कम प्रतीक्षा समय वाले ग्राहक को पहले परोसा जाएगा।[20]एक स्टैक के रूप में भी जाना जाता है।
- प्रोसेसर साझाकरण
- सेवा क्षमता ग्राहकों के बीच समान रूप से साझा की जाती है।[20]
- प्राथमिकता
- उच्च प्राथमिकता वाले ग्राहकों को पहले परोसा जाता है।[20]प्राथमिकता कतारें दो प्रकार की हो सकती हैं, गैर-पूर्व निर्धारित (जहां सेवा में एक नौकरी बाधित नहीं की जा सकती है) और प्रीमेप्टिव (जहां सेवा में नौकरी को उच्च प्राथमिकता वाली नौकरी से बाधित किया जा सकता है)।कोई भी काम किसी भी मॉडल में नहीं है।[21]
- सबसे छोटी नौकरी पहले
- सेवा की जाने वाली अगली नौकरी सबसे छोटे आकार के साथ है[22]
- प्रीमेप्टिव सबसे छोटी नौकरी पहले
- सेवा की जाने वाली अगली नौकरी मूल सबसे छोटे आकार के साथ है[23]
- सबसे कम शेष प्रसंस्करण समय
- सेवा करने के लिए अगली नौकरी सबसे छोटी शेष प्रसंस्करण आवश्यकता के साथ एक है।[24]
- सेवा सुविधा
- सिंगल सर्वर: ग्राहक लाइन अप करते हैं और केवल एक सर्वर होता है
- कई समानांतर सर्वर -पिंगल कतार: ग्राहक लाइन अप करते हैं और कई सर्वर हैं
- कई सर्वर -व्यक्तिगत कतारें: कई काउंटर हैं और ग्राहक तय कर सकते हैं कि कतार कहाँ जाना है
- अविश्वसनीय सर्वर
सर्वर विफलताएं एक स्टोकेस्टिक प्रक्रिया (आमतौर पर पॉइसन) के अनुसार होती हैं और इसके बाद सेटअप अवधि होती है, जिसके दौरान सर्वर अनुपलब्ध है।बाधित ग्राहक सेवा क्षेत्र में तब तक रहता है जब तक कि सर्वर तय नहीं हो जाता।[25]
- प्रतीक्षा का ग्राहक का व्यवहार
- बालक: ग्राहक कतार में शामिल नहीं होने का निर्णय लेते हैं यदि यह बहुत लंबा है
- जॉकी: ग्राहक कतारों के बीच स्विच करते हैं यदि उन्हें लगता है कि वे ऐसा करके तेजी से सेवा करेंगे
- रेनेगिंग: ग्राहक कतार छोड़ देते हैं यदि उन्होंने सेवा के लिए बहुत लंबा इंतजार किया है
आने वाले ग्राहकों की सेवा नहीं की जाती है (या तो कतार के कारण कोई बफर नहीं है, या ग्राहक द्वारा चालाक या पुनर्जीवित होने के कारण) को भी ड्रॉपआउट के रूप में जाना जाता है और ड्रॉपआउट की औसत दर एक महत्वपूर्ण पैरामीटर है जो एक कतार का वर्णन करती है।
कतारबद्ध नेटवर्क
कतारों के नेटवर्क ऐसे सिस्टम हैं जिनमें कई कतारों को ग्राहक रूटिंग के रूप में जाना जाता है।जब एक ग्राहक को एक नोड पर सेवित किया जाता है तो यह सेवा के लिए एक और नोड और कतार में शामिल हो सकता है, या नेटवर्क छोड़ सकता है।
एम नोड्स के नेटवर्क के लिए, सिस्टम की स्थिति को एम -आयामी वेक्टर (एक्स) द्वारा वर्णित किया जा सकता है1, x2, ..., xm) where xiप्रत्येक नोड पर ग्राहकों की संख्या का प्रतिनिधित्व करता है।
कतारों के सबसे सरल गैर-तुच्छ नेटवर्क को टेंडेम कतार कहा जाता है।[26]इस क्षेत्र में पहले महत्वपूर्ण परिणाम जैक्सन नेटवर्क थे,[27][28]जिसके लिए एक कुशल उत्पाद-रूप स्थिर वितरण मौजूद है और औसत मूल्य विश्लेषण है[29]जो औसत मैट्रिक्स जैसे थ्रूपुट और सोजर्न टाइम्स की गणना करने की अनुमति देता है।[30]यदि नेटवर्क में ग्राहकों की कुल संख्या स्थिर रहती है, तो नेटवर्क को एक बंद नेटवर्क कहा जाता है और इसे गॉर्डन -नेवेल प्रमेय में एक उत्पाद -प्रफुल्ल स्थिर वितरण भी दिखाया गया है।[31]यह परिणाम BCMP नेटवर्क तक बढ़ाया गया था[32]जहां बहुत सामान्य सेवा समय के साथ एक नेटवर्क, शासनों और ग्राहक रूटिंग को एक उत्पाद-रूप स्थिर वितरण को प्रदर्शित करने के लिए दिखाया गया है।सामान्यीकरण स्थिरांक की गणना 1973 में प्रस्तावित बुज़ेन के एल्गोरिथ्म के साथ की जा सकती है।[33]
ग्राहकों के नेटवर्क की भी जांच की गई है, केली नेटवर्क्स जहां विभिन्न वर्गों के ग्राहक विभिन्न सेवा नोड्स पर विभिन्न प्राथमिकता स्तरों का अनुभव करते हैं।[34]एक अन्य प्रकार के नेटवर्क जी-नेटवर्क्स हैं जो पहले 1993 में एरोल गेलेनबे द्वारा प्रस्तावित हैं:[35]ये नेटवर्क क्लासिक जैक्सन नेटवर्क की तरह घातीय समय वितरण नहीं मानते हैं।
रूटिंग एल्गोरिदम
असतत समय नेटवर्क में जहां एक बाधा होती है, जिस पर सेवा नोड किसी भी समय सक्रिय हो सकते हैं, अधिकतम-वजन शेड्यूलिंग एल्गोरिथ्म इस मामले में इष्टतम थ्रूपुट देने के लिए एक सेवा नीति चुनता है कि प्रत्येक नौकरी केवल एक-व्यक्ति सेवा नोड पर जाती है।[19]अधिक सामान्य मामले में जहां नौकरियां एक से अधिक नोड पर जा सकती हैं, बैकप्रेस रूटिंग इष्टतम थ्रूपुट देता है।एक नेटवर्क शेड्यूलर को एक कतारबद्ध एल्गोरिथ्म का चयन करना होगा, जो बड़े नेटवर्क की विशेषताओं को प्रभावित करता है[citation needed]।कतारबद्ध सिस्टम के शेड्यूलिंग के बारे में अधिक के लिए स्टोकेस्टिक शेड्यूलिंग भी देखें।
माध्य-क्षेत्र सीमाएं
मीन-फील्ड मॉडल अनुभवजन्य उपाय (विभिन्न राज्यों में कतारों का अनुपात) के सीमित व्यवहार पर विचार करते हैं क्योंकि कतारों की संख्या (ऊपर) अनंत तक जाती है।नेटवर्क में किसी भी कतार पर अन्य कतारों का प्रभाव एक अंतर समीकरण द्वारा अनुमानित है।नियतात्मक मॉडल मूल मॉडल के रूप में एक ही स्थिर वितरण में परिवर्तित होता है।[36]
भारी यातायात/प्रसार सन्निकटन
उच्च अधिभोग दरों के साथ एक प्रणाली में (1 के पास उपयोग) एक भारी यातायात सन्निकटन का उपयोग एक प्रतिबिंबित ब्राउनियन गति द्वारा कतार की लंबाई की प्रक्रिया को अनुमानित करने के लिए किया जा सकता है,[37]ऑर्नस्टीन -उहलेनबेक प्रक्रिया, या अधिक सामान्य प्रसार प्रक्रिया।[38]ब्राउनियन प्रक्रिया के आयामों की संख्या कतारबद्ध नोड्स की संख्या के बराबर है, जिसमें गैर-नकारात्मक ऑर्थेंट के लिए प्रतिबंधित प्रसार होता है।
द्रव सीमा
द्रव मॉडल कतारबद्ध नेटवर्क के निरंतर नियतात्मक अनुरूप हैं, जब प्रक्रिया को समय और स्थान में बढ़ाया जाता है, जिससे विषम वस्तुओं की अनुमति मिलती है।यह स्केल किया गया प्रक्षेपवक्र एक नियतात्मक समीकरण में परिवर्तित हो जाता है जो सिस्टम की स्थिरता को सिद्ध करने की अनुमति देता है।यह ज्ञात है कि एक कतार नेटवर्क स्थिर हो सकता है, लेकिन एक अस्थिर द्रव सीमा है।[39]
यह भी देखें
- Ehrenfest मॉडल
- एर्लंग यूनिट
- नेटवर्क सिमुलेशन
- प्रोजेक्ट प्रोडक्शन मैनेजमेंट
- कतार क्षेत्र
- कतार में देरी
- कतार प्रबंधन प्रणाली
- अंगूठे का नियम
- यादृच्छिक प्रारंभिक पता लगाना
- नवीकरण सिद्धांत
- थ्रूपुट
- शेड्यूलिंग (कम्प्यूटिंग)
- ट्रैफ़िक जाम
- ट्रैफिक जनरेशन मॉडल
- प्रवाह नेटवर्क
संदर्भ
- ↑ 1.0 1.1 1.2 Sundarapandian, V. (2009). "7. Queueing Theory". Probability, Statistics and Queueing Theory. PHI Learning. ISBN 978-8120338449.
- ↑ Lawrence W. Dowdy, Virgilio A.F. Almeida, Daniel A. Menasce. "Performance by Design: Computer Capacity Planning by Example". Archived from the original on 2016-05-06. Retrieved 2009-07-08.
- ↑ Schlechter, Kira (March 2, 2009). "Hershey Medical Center to open redesigned emergency room". The Patriot-News. Archived from the original on June 29, 2016. Retrieved March 12, 2009.
- ↑ Mayhew, Les; Smith, David (December 2006). Using queuing theory to analyse completion times in accident and emergency departments in the light of the Government 4-hour target. Cass Business School. ISBN 978-1-905752-06-5. Archived from the original on September 7, 2021. Retrieved 2008-05-20.
- ↑ TIJMS, H.C, कतार का एल्गोरिथम विश्लेषण, स्टोकेस्टिक मॉडल में एक पहले पाठ्यक्रम में अध्याय 9, विली, चिचस्टर, 2003
- ↑ Kendall, D. G. (1953). "Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain". The Annals of Mathematical Statistics. 24 (3): 338–354. doi:10.1214/aoms/1177728975. JSTOR 2236285.
- ↑ Hernández-Suarez, Carlos (2010). "An application of queuing theory to SIS and SEIS epidemic models". Math. Biosci. 7 (4): 809–823. doi:10.3934/mbe.2010.7.809. PMID 21077709.
- ↑ "Agner Krarup Erlang (1878-1929) | plus.maths.org". Pass.maths.org.uk. 1997-04-30. Archived from the original on 2008-10-07. Retrieved 2013-04-22.
- ↑ Asmussen, S. R.; Boxma, O. J. (2009). "Editorial introduction". Queueing Systems. 63 (1–4): 1–2. doi:10.1007/s11134-009-9151-8. S2CID 45664707.
- ↑ Erlang, Agner Krarup (1909). "The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. Archived from the original (PDF) on 2011-10-01.
- ↑ 11.0 11.1 11.2 Kingman, J. F. C. (2009). "The first Erlang century—and the next". Queueing Systems. 63 (1–4): 3–4. doi:10.1007/s11134-009-9147-4. S2CID 38588726.
- ↑ Pollaczek, F., प्रायिकता सिद्धांत के एक कार्य के बारे में, गणित। Z. 1930
- ↑ 13.0 13.1 13.2 Whittle, P. (2002). "Applied Probability in Great Britain". Operations Research. 50 (1): 227–239. doi:10.1287/opre.50.1.227.17792. JSTOR 3088474.
- ↑ केंडल, डी.जी.: स्टोचस्टिक प्रक्रियाएं कतार के सिद्धांत में होती हैं और इम्बेडेड मार्कोव श्रृंखला, एन की विधि द्वारा उनके विश्लेषण।गणित।स्टेट।1953
- ↑ Pollaczek, F., स्टोकेस्टिक समस्याएं एक पूंछ के गठन की घटना से उत्पन्न हुईं
- ↑ Kingman, J. F. C.; Atiyah (October 1961). "The single server queue in heavy traffic". Mathematical Proceedings of the Cambridge Philosophical Society. 57 (4): 902. Bibcode:1961PCPS...57..902K. doi:10.1017/S0305004100036094. JSTOR 2984229.
- ↑ Ramaswami, V. (1988). "A stable recursion for the steady state vector in markov chains of m/g/1 type". Communications in Statistics. Stochastic Models. 4: 183–188. doi:10.1080/15326348808807077.
- ↑ Morozov, E. (2017). "Stability analysis of a multiclass retrial system withcoupled orbit queues". Proceedings of 14th European Workshop. Lecture Notes in Computer Science. Vol. 17. pp. 85–98. doi:10.1007/978-3-319-66583-2_6. ISBN 978-3-319-66582-5.
- ↑ 19.0 19.1 Manuel, Laguna (2011). Business Process Modeling, Simulation and Design (in English). Pearson Education India. p. 178. ISBN 9788131761359. Retrieved 6 October 2017.
- ↑ 20.0 20.1 20.2 20.3 पेंट्टिनन ए।, अध्याय 8 & ndash;कतार प्रणाली, व्याख्यान नोट: S -38.145 - Teletraffic सिद्धांत का परिचय।
- ↑ Harchol-Balter, M. (2012). "Scheduling: Non-Preemptive, Size-Based Policies". Performance Modeling and Design of Computer Systems. pp. 499–507. doi:10.1017/CBO9781139226424.039. ISBN 9781139226424.
- ↑ Andrew S. Tanenbaum; Herbert Bos (2015). Modern Operating Systems. Pearson. ISBN 978-0-13-359162-0.
- ↑ Harchol-Balter, M. (2012). "Scheduling: Preemptive, Size-Based Policies". Performance Modeling and Design of Computer Systems. pp. 508–517. doi:10.1017/CBO9781139226424.040. ISBN 9781139226424.
- ↑ Harchol-Balter, M. (2012). "Scheduling: SRPT and Fairness". Performance Modeling and Design of Computer Systems. pp. 518–530. doi:10.1017/CBO9781139226424.041. ISBN 9781139226424.
- ↑ Dimitriou, I. (2019). "A Multiclass Retrial System With Coupled Orbits And Service Interruptions: Verification of Stability Conditions". Proceedings of FRUCT 24. 7: 75–82.
- ↑ "Archived copy" (PDF). Archived (PDF) from the original on 2017-03-29. Retrieved 2018-08-02.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ Jackson, J. R. (1957). "Networks of Waiting Lines". Operations Research. 5 (4): 518–521. doi:10.1287/opre.5.4.518. JSTOR 167249.
- ↑ Jackson, James R. (Oct 1963). "Jobshop-like Queueing Systems". Management Science. 10 (1): 131–142. doi:10.1287/mnsc.1040.0268. JSTOR 2627213.
- ↑ Reiser, M.; Lavenberg, S. S. (1980). "Mean-Value Analysis of Closed Multichain Queuing Networks". Journal of the ACM. 27 (2): 313. doi:10.1145/322186.322195. S2CID 8694947.
- ↑ Van Dijk, N. M. (1993). "On the arrival theorem for communication networks". Computer Networks and ISDN Systems. 25 (10): 1135–2013. doi:10.1016/0169-7552(93)90073-D. Archived from the original on 2019-09-24. Retrieved 2019-09-24.
- ↑ Gordon, W. J.; Newell, G. F. (1967). "Closed Queuing Systems with Exponential Servers". Operations Research. 15 (2): 254. doi:10.1287/opre.15.2.254. JSTOR 168557.
- ↑ Baskett, F.; Chandy, K. Mani; Muntz, R.R.; Palacios, F.G. (1975). "Open, closed and mixed networks of queues with different classes of customers". Journal of the ACM. 22 (2): 248–260. doi:10.1145/321879.321887. S2CID 15204199.
- ↑ Buzen, J. P. (1973). "Computational algorithms for closed queueing networks with exponential servers" (PDF). Communications of the ACM. 16 (9): 527–531. doi:10.1145/362342.362345. S2CID 10702. Archived (PDF) from the original on 2016-05-13. Retrieved 2015-09-01.
- ↑ Kelly, F. P. (1975). "Networks of Queues with Customers of Different Types". Journal of Applied Probability. 12 (3): 542–554. doi:10.2307/3212869. JSTOR 3212869.
- ↑ Gelenbe, Erol (Sep 1993). "G-Networks with Triggered Customer Movement". Journal of Applied Probability. 30 (3): 742–748. doi:10.2307/3214781. JSTOR 3214781.
- ↑ Bobbio, A.; Gribaudo, M.; Telek, M. S. (2008). "Analysis of Large Scale Interacting Systems by Mean Field Method". 2008 Fifth International Conference on Quantitative Evaluation of Systems. p. 215. doi:10.1109/QEST.2008.47. ISBN 978-0-7695-3360-5. S2CID 2714909.
- ↑ Chen, H.; Whitt, W. (1993). "Diffusion approximations for open queueing networks with service interruptions". Queueing Systems. 13 (4): 335. doi:10.1007/BF01149260. S2CID 1180930.
- ↑ Yamada, K. (1995). "Diffusion Approximation for Open State-Dependent Queueing Networks in the Heavy Traffic Situation". The Annals of Applied Probability. 5 (4): 958–982. doi:10.1214/aoap/1177004602. JSTOR 2245101.
- ↑ Bramson, M. (1999). "A stable queueing network with unstable fluid model". The Annals of Applied Probability. 9 (3): 818–853. doi:10.1214/aoap/1029962815. JSTOR 2667284.
अग्रिम पठन
- Gross, Donald; Carl M. Harris (1998). Fundamentals of Queueing Theory. Wiley. ISBN 978-0-471-32812-4. Online
- Zukerman, Moshe (2013). Introduction to Queueing Theory and Stochastic Teletraffic Models (PDF). arXiv:1307.2968.
- Deitel, Harvey M. (1984) [1982]. An introduction to operating systems (revisited first ed.). Addison-Wesley. p. 673. ISBN 978-0-201-14502-1. chap.15, pp. 380–412
- Gelenbe, Erol; Isi Mitrani (2010). Analysis and Synthesis of Computer Systems. World Scientific 2nd Edition. ISBN 978-1-908978-42-4.
- Newell, Gordron F. (1 June 1971). Applications of Queueing Theory. Chapman and Hall.
- Leonard Kleinrock, Information Flow in Large Communication Nets, (MIT, Cambridge, May 31, 1961) Proposal for a Ph.D. Thesis
- Leonard Kleinrock. Information Flow in Large Communication Nets (RLE Quarterly Progress Report, July 1961)
- Leonard Kleinrock. Communication Nets: Stochastic Message Flow and Delay (McGraw-Hill, New York, 1964)
- Kleinrock, Leonard (2 January 1975). Queueing Systems: Volume I – Theory. New York: Wiley Interscience. pp. 417. ISBN 978-0471491101.
- Kleinrock, Leonard (22 April 1976). Queueing Systems: Volume II – Computer Applications. New York: Wiley Interscience. pp. 576. ISBN 978-0471491118.
- Lazowska, Edward D.; John Zahorjan; G. Scott Graham; Kenneth C. Sevcik (1984). Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc. ISBN 978-0-13-746975-8.
- Jon Kleinberg; Éva Tardos (30 June 2013). Algorithm Design. Pearson. ISBN 978-1-292-02394-6.
बाहरी संबंध
- Queueing theory calculator
- Teknomo's Queueing theory tutorial and calculators
- Office Fire Emergency Evacuation Simulation on YouTube
- Virtamo's Queueing Theory Course
- Myron Hlynka's Queueing Theory Page
- Queueing Theory Basics
- A free online tool to solve some classical queueing systems
- JMT: an open source graphical environment for queueing theory
- LINE: a general-purpose engine to solve queueing models
- What You Hate Most About Waiting in Line: (It’s not the length of the wait.), by Seth Stevenson, Slate, 2012 – popular introduction