माइक्रोफैब्रिकेशन

From Vigyanwiki
Revision as of 17:57, 18 December 2022 by alpha>Pratibhasethi
प्लानेराइज्ड कॉपर इंटरकनेक्ट की चार परतों के माध्यम से पॉलीसिलिकॉन (गुलाबी), कुएं (भूरे रंग) और सब्सट्रेट (हरा) के नीचे एक सूक्ष्मनिर्मित एकीकृत सर्किट का सिंथेटिक विवरण

माइक्रोफैब्रिकेशन माइक्रोमीटर स्केल और छोटे के लघु संरचनाओं को बनाने की प्रक्रिया है। ऐतिहासिक रूप से, एकीकृत सर्किट निर्माण के लिए सबसे पहले माइक्रोफैब्रिकेशन प्रक्रियाओं का उपयोग किया गया था, "अर्धचालक निर्माण" या "अर्धचालक युक्ति निर्माण" के रूप में भी जाना जाता है। पिछले दो दशकों में माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम (एमईएमएस), माइक्रोसिस्टम्स (यूरोपीय उपयोग), माइक्रोमशीनरी (जापानी शब्दावली) और उनके उपक्षेत्र, माइक्रोफ्लुइडिक्स/लैब-ऑन-ए-चिप, ऑप्टिकल एमईएमएस (जिन्हें एमओईएमएस भी कहा जाता है), आरएफ एमईएमएस, पावरएमईएमएस, बायोएमईएमएस और नैनोस्केल में उनका विस्तार (उदाहरण के लिए एनईएमएस, नैनो इलेक्ट्रो मैकेनिकल सिस्टम के लिए) ने माइक्रोफैब्रिकेशन विधियों का पुन: उपयोग, अनुकूलित या विस्तारित किया है। फ्लैट-पैनल डिस्प्ले और सोलर सेल भी इसी तरह की तकनीकों का उपयोग कर रहे हैं।

विभिन्न उपकरणों का लघुकरण विज्ञान और इंजीनियरिंग के कई क्षेत्रों में चुनौतियां प्रस्तुत करता है: भौतिकी, रसायन विज्ञान, पदार्थ विज्ञान, कंप्यूटर विज्ञान, अतिसूक्ष्म अभियांत्रिकी, निर्माण प्रक्रिया, तथा उपकरण डिजाइन। यह विभिन्न प्रकार के अंतःविषय अनुसंधान को भी जन्म दे रही है।[1] माइक्रोफैब्रिकेशन की प्रमुख अवधारणाएं और सिद्धांत माइक्रोलिथोग्राफी, डोपिंग (सेमीकंडक्टर), पतली फिल्में, नक़्क़ाशी, तार का जोड़ और घर्षण हैं।

सेमीकंडक्टर माइक्रोफैब्रिकेशन में पी-टाइप सब्सट्रेट पर सीएमओएस इन्वर्टर के निर्माण की प्रक्रिया का सरलीकृत चित्रण। प्रत्येक नक़्क़ाशी कदम निम्नलिखित छवि में विस्तृत है। नोट: गेट, स्रोत और नाली संपर्क सामान्य रूप से वास्तविक उपकरणों में एक ही विमान में स्थित नहीं होते हैं, और इस प्रकार, आरेखों को स्केल नहीं किया जाता है।
एक नक़्क़ाशी कदम का विवरण।

उपयोग के क्षेत्र

माइक्रोफैब्रिकेटेड उपकरणों में शामिल हैं:

उत्पत्ति

माइक्रोफैब्रिकेशन प्रौद्योगिकियां माइक्रोइलेक्ट्रॉनिक्स उद्योग से उत्पन्न होती हैं, और उपकरण आमतौर पर सिलिकॉन वेफर्स पर बने होते हैं, भले ही कांच, प्लास्टिक और कई अन्य सब्सट्रेट उपयोग में हों। माइक्रोमशीनिंग, अर्धचालक प्रसंस्करण, माइक्रोइलेक्ट्रॉनिक निर्माण, अर्धचालक निर्माण, माइक्रोफैब्रिकेशन के बजाय एमईएमएस फैब्रिकेशन और इंटीग्रेटेड सर्किट टेक्नोलॉजी का इस्तेमाल किया जाता है, लेकिन माइक्रोफैब्रिकेशन व्यापक सामान्य शब्द है।

पारंपरिक मशीनिंग तकनीक जैसे इलेक्ट्रो-डिस्चार्ज मशीनिंग, स्पार्क अपरदन मशीनिंग,और लेजर ड्रिलिंग को मिलीमीटर आकार सीमा से माइक्रोमीटर रेंज तक बढ़ाया गया है, लेकिन वे माइक्रोइलेक्ट्रॉनिक-उत्पन्न माइक्रोफैब्रिकेशन के मुख्य विचार को साझा नहीं करते हैं: सैकड़ों या लाखों समान संरचनाओं की प्रतिकृति और समानांतर निर्माण। यह समानता विभिन्न मुद्रण, ढलाई और मोल्डिंग तकनीकों में मौजूद है, जिन्हें सूक्ष्म शासन में सफलतापूर्वक लागू किया गया है। उदाहरण के लिए, डीवीडी के इंजेक्शन मोल्डिंग में डिस्क पर सबमाइक्रोमीटर-आकार के धब्बे का निर्माण शामिल है।

प्रक्रियाएं

माइक्रोफैब्रिकेशन वास्तव में प्रौद्योगिकियों का एक संग्रह है जिसका उपयोग माइक्रोडिवाइस बनाने में किया जाता है। उनमें से कुछ बहुत पुराने मूल के हैं, जो निर्माण से जुड़े नहीं हैं, जैसे लिथोग्राफी या नक़्क़ाशी। पॉलिशिंग प्रकाशिकी निर्माण से उधार ली गई थी, और कई वैक्यूम तकनीकें 19वीं शताब्दी के भौतिकी अनुसंधान से आती हैं। इलेक्ट्रोप्लेटिंग माइक्रोमीटरर पैमाने संरचनाओं का उत्पादन करने के लिए अनुकूलित एक 19 वीं शताब्दी की तकनीक है, विभिन्न मुद्रांकन और एम्बॉसिंग तकनीकों के रूप में।

माइक्रोडिवाइस का निर्माण करने के लिए, कई प्रक्रियाएं एक के बाद कई बार बार निष्पादित होनी चाहिए। इन प्रक्रियाओं में आम तौर पर एक फिल्म जमा करना, फिल्म को वांछित सूक्ष्म विशेषताओं के साथ प्रतिरूपित करना, और फिल्म के हिस्सों को हटाना (या नक़्क़ाशी करना) शामिल है। इन व्यक्तिगत प्रक्रियाओं में प्रत्येक चरण के दौरान सामान्यतया पतली फिल्म मैट्रोलोजी का प्रयोग किया जाता है, ताकि फिल्म संरचना में मोटाई के संदर्भ में वांछित विशेषताएँ हों। (टी), अपवर्तक सूचकांक (एन) और विलोपन गुणांक (के),[2] उपयुक्त उपकरण व्यवहार के लिए। उदाहरण के लिए, मेमोरी चिप निर्माण में कुछ 30 लिथोग्राफी चरण होते हैं, 10 ऑक्सीकरण कदम, 20 नक़्क़ाशी चरण, 10 डोपिंग कदम, और कई अन्य का प्रदर्शन किया जाता है। माइक्रोफैब्रिकेशन प्रक्रिया की जटिलता उनके आवरण संख्या द्वारा वर्णित की जा सकती है। यह विभिन्न पैटर्न परतों की संख्या है जो अंतिम डिवाइस का गठन करते है। आधुनिक माइक्रोप्रोसेसरों को 30 मास्क के साथ बनाया जाता है जबकि कुछ मास्क माइक्रोफ्लुइडिक डिवाइस या लेजर डायोड के लिए पर्याप्त होते हैं। माइक्रोफैब्रिकेशन कई एक्सपोज़र फ़ोटोग्राफ़ी जैसा दिखता है, जिसमें अंतिम संरचना बनाने के लिए कई पैटर्न एक-दूसरे से जुड़े होते हैं।

सबस्ट्रेट्स

माइक्रोफैब्रिकेटेड डिवाइस आमतौर पर फ्रीस्टैंडिंग डिवाइस नहीं होते हैं, लेकिन आमतौर पर मोटे सपोर्ट सब्सट्रेट पर या उसके ऊपर बनते हैं। इलेक्ट्रॉनिक अनुप्रयोगों के लिए, सिलिकॉन वेफर्स जैसे सेमीकंडक्टिंग सबस्ट्रेट्स का उपयोग किया जा सकता है। ऑप्टिकल उपकरणों या फ्लैट पैनल डिस्प्ले के लिए, ग्लास या क्वार्ट्ज जैसे पारदर्शी सबस्ट्रेट्स आम हैं। सब्सट्रेट से अनेक संविचरण चरणों के माध्यम से माइक्रो डिवाइस को सरलता से संभाला जा सकता है। अक्सर कई व्यक्तिगत डिवाइस एक सब्सट्रेट पर एक साथ बनाये जाते हैं और फिर फैब्रिकेशन के अंत की ओर अलग-अलग उपकरणों में चले जाते हैं।

निक्षेपण या वृद्धि

माइक्रोफैब्रिकेटेड डिवाइस आमतौर पर एक या अधिक पतली फिल्मों का उपयोग करके बनाए जाते हैं (पतली फिल्म बयान देखें)। इन पतली फिल्मों का उद्देश्य डिवाइस के प्रकार पर निर्भर करता है। इलेक्ट्रॉनिक उपकरणों में पतली फिल्में हो सकती हैं जो कंडक्टर (धातु), इंसुलेटर (डाइइलेक्ट्रिक्स) या अर्धचालक हैं। ऑप्टिकल उपकरणों में ऐसी फिल्में हो सकती हैं जो परावर्तक, पारदर्शी, प्रकाश मार्गदर्शक या बिखरने वाली हों। फिल्मों में रासायनिक या यांत्रिक उद्देश्य के साथ-साथ एमईएमएस अनुप्रयोगों के लिए भी हो सकता है। निक्षेपण तकनीकों के उदाहरणों में शामिल हैं:

पैटर्निंग

यह अक्सर एक फिल्म को अलग-अलग विशेषताओं में या कुछ परतों में उद्घाटन (या विअस) बनाने के लिए वांछनीय होता है। ये विशेषताएं माइक्रोमीटर या नैनोमीटर स्केल पर हैं और पैटर्निंग तकनीक ही माइक्रोफैब्रिकेशन को परिभाषित करती है। यह पैटर्निंग तकनीक आमतौर पर फिल्म के उन हिस्सों को परिभाषित करने के लिए 'मास्क' का उपयोग करती है जिन्हें हटा दिया जाएगा। पैटर्निंग तकनीकों के उदाहरणों में शामिल हैं:

  • फोटोलिथोग्राफी
  • छाया मास्किंग

नक़्क़ाशी

नक़्क़ाशी पतली फिल्म या सब्सट्रेट के कुछ हिस्से को हटाना है। सब्सट्रेट (सब्सट्रेट) नक़्क़ाशी (जैसे कि एक एसिड या प्लाज्मा) के संपर्क में रहता है जो रासायनिक या शारीरिक रूप से फिल्म पर तब तक आक्रमण करता है जब तक कि इसे हटाया नहीं जाता। नक़्क़ाशी तकनीकों में शामिल हैं:

माइक्रोफॉर्मिंग

माइक्रोफॉर्मिंग माइक्रोसिस्टम या माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम (एमईएमएस) की एक माइक्रोफैब्रिकेशन प्रक्रिया है जो "सबमिलिमीटर रेंज में कम से कम दो आयामों वाले हिस्से या संरचनाएं।"हैं।[3][4][5] इसमें माइक्रोएक्सट्रूज़न,[4] माइक्रोस्टैम्पिंग,[6] और माइक्रोकटिंग[7] जैसी तकनीकें शामिल हैं। इन और अन्य माइक्रोफॉर्मिंग प्रक्रियाओं की परिकल्पना और शोध कम से कम 1990 के बाद से किया गया है,[3] जिससे औद्योगिक और प्रायोगिक-ग्रेड निर्माण उपकरण का विकास हुआ। हालाँकि, जैसा कि फू और चान ने 2013 की अत्याधुनिक प्रौद्योगिकी समीक्षा में बताया है, प्रौद्योगिकी को अधिक व्यापक रूप से लागू करने से पहले कई मुद्दों को अभी भी हल किया जाना चाहिए, विरूपण भार और दोषों सहित, सिस्टम स्थिरता, यांत्रिक गुण, और क्रिस्टलीय (अनाज) संरचना और सीमाओं पर अन्य आकार से संबंधित प्रभाव:[4][5][8]

माइक्रोफॉर्मिंग में, अनाज की सीमाओं के कुल सतह क्षेत्र का सामग्री मात्रा में अनुपात नमूना आकार में कमी और अनाज के आकार में वृद्धि के साथ घटता है। इससे अनाज की सीमा को मजबूत करने के प्रभाव में कमी आती है। आंतरिक अनाज की तुलना में सतह के अनाज में कम बाधाएँ होती हैं। भाग ज्यामिति आकार के प्रवाह तनाव में परिवर्तन आंशिक रूप से सतह के अनाज के मात्रा अंश के परिवर्तन के कारण होता है। इसके अलावा प्रत्येक अनाज के एनीसोट्रोपिक गुण वर्कपीस आकार की कमी के साथ महत्वपूर्ण हो जाते हैं, जिसके परिणामस्वरूप अमानवीय विरूपण, अनियमित गठित ज्यामिति और विरूपण भार की भिन्नता होती है। आकार प्रभावों के विचार के साथ भाग, प्रक्रिया और टूलींग के डिजाइन का समर्थन करने के लिए माइक्रोफॉर्मिंग के व्यवस्थित ज्ञान को स्थापित करने की एक महत्वपूर्ण आवश्यकता है।[8]

अन्य

माइक्रोफैब्रिकेटेड उपकरणों के रासायनिक गुणों की सफाई, योजना बनाने या संशोधित करने के लिए अन्य प्रक्रियाओं की एक विस्तृत विविधता भी की जा सकती है। कुछ उदाहरणों में शामिल हैं:

वेफर निर्माण में स्वच्छता

माइक्रोफैब्रिकेशन साफ कमरा में किया जाता है, जहां हवा को कण संदूषण और तापमान, आर्द्रता, कंपन और विद्युत गड़बड़ी से फ़िल्टर किया गया है, कड़े नियंत्रण में हैं। धुआँ, धूल, जीवाणु और कोशिका (जीव विज्ञान) आकार में माइक्रोमीटर हैं, और उनकी उपस्थिति एक माइक्रोफैब्रिकेटेड डिवाइस की कार्यक्षमता को नष्ट कर देगी।

क्लीनरूम निष्क्रिय सफाई प्रदान करते हैं लेकिन प्रत्येक महत्वपूर्ण कदम से पहले वेफर्स को भी सक्रिय रूप से साफ किया जाता है। RCA क्लीन|RCA-1 क्लीन इन अमोनिया-पेरोक्साइड सॉल्यूशन ऑर्गेनिक संदूषण और कणों को हटाता है; हाईड्रोजन क्लोराईड-पेरोक्साइड मिश्रण में RCA-2 की सफाई धातु की अशुद्धियों को दूर करती है। सल्फ्यूरिक एसिड-पेरोक्साइड मिश्रण (उर्फ पिरान्हा) ऑर्गेनिक्स को हटाता है। हाइड्रोजन फ्लोराइड सिलिकॉन की सतह से नेटिव ऑक्साइड को हटाता है। ये सभी समाधान में गीली सफाई के चरण हैं। ड्राई क्लीनिंग विधियों में अवांछित सतह परतों को हटाने के लिए ऑक्सीजन और आर्गन प्लाज्मा उपचार शामिल हैं, या एपिटॉक्सी से पहले देशी ऑक्साइड को हटाने के लिए ऊंचे तापमान पर हाइड्रोजन बेक किया जाता है। CMOS निर्माण में प्री-गेट सफाई सबसे महत्वपूर्ण सफाई कदम है: यह सुनिश्चित करता है कि ca. एमओएस ट्रांजिस्टर के 2 एनएम मोटे ऑक्साइड को व्यवस्थित तरीके से उगाया जा सकता है। ऑक्सीकरण, और सभी उच्च तापमान चरण संदूषण के प्रति बहुत संवेदनशील होते हैं, और सफाई के चरणों को उच्च तापमान चरणों से पहले होना चाहिए।

सतह की तैयारी सिर्फ एक अलग दृष्टिकोण है, ऊपर वर्णित सभी चरण समान हैं: यह प्रसंस्करण शुरू करने से पहले वेफर सतह को नियंत्रित और अच्छी तरह से ज्ञात स्थिति में छोड़ने के बारे में है। वेफर्स पिछले प्रक्रिया चरणों (जैसे आयन आरोपण के दौरान ऊर्जावान आयनों द्वारा कक्ष की दीवारों से बमबारी की गई धातु) से दूषित होते हैं, या वे वेफर बॉक्स से पॉलीमर एकत्र कर सकते हैं, और यह प्रतीक्षा समय के आधार पर भिन्न हो सकता है।

वेफर की सफाई और सतह की तैयारी गेंदबाजी गली में मशीनों के समान काम करती है: पहले वे सभी अवांछित बिट्स और टुकड़ों को हटाते हैं, और फिर वे वांछित पैटर्न का पुनर्निर्माण करते हैं ताकि खेल चल सके।

यह भी देखें

संदर्भ

  1. Nitaigour Premchand Mahalik (2006) "Micromanufacturing and Nanotechnology", Springer, ISBN 3-540-25377-7
  2. Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015). "स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री और स्पेक्ट्रोफोटोमेट्री द्वारा निर्धारित CH3NH3PbI3 पेरोसाइट पतली फिल्मों का जटिल अपवर्तक सूचकांक स्पेक्ट्रा". The Journal of Physical Chemistry Letters. 6 (1): 66–71. doi:10.1021/jz502471h. PMID 26263093. Retrieved 2021-11-16.
  3. 3.0 3.1 Engel, U.; Eckstein, R. (2002). "माइक्रोफॉर्मिंग - बुनियादी शोध से इसकी प्राप्ति तक". Journal of Materials Processing Technology. 125–126 (2002): 35–44. doi:10.1016/S0924-0136(02)00415-6.
  4. 4.0 4.1 4.2 Dixit, U.S.; Das, R. (2012). "Chapter 15: Microextrusion". In Jain, V.K. (ed.). सूक्ष्म निर्माण प्रक्रियाएं. CRC Press. pp. 263–282. ISBN 9781439852903.
  5. 5.0 5.1 Razali, A.R.; Qin, Y. (2013). "माइक्रो-मैन्युफैक्चरिंग, माइक्रो-फॉर्मिंग और उनके प्रमुख मुद्दों पर एक समीक्षा". Procedia Engineering. 53 (2013): 665–672. doi:10.1016/j.proeng.2013.02.086.
  6. Advanced Manufacturing Processes Laboratory (2015). "माइक्रो-स्टैम्पिंग में प्रक्रिया विश्लेषण और विविधता नियंत्रण". Northwestern University. Retrieved 18 March 2016.
  7. Fu, M.W.; Chan, W.L. (2014). "Chapter 4: Microforming Processes". माइक्रोफॉर्मिंग के माध्यम से माइक्रो-स्केल्ड उत्पाद विकास: विरूपण व्यवहार, प्रक्रियाएं, टूलिंग और इसकी प्राप्ति. Springer Science & Business Media. pp. 73–130. ISBN 9781447163268.
  8. 8.0 8.1 Fu, M.W.; Chan, W.L. (2013). "अत्याधुनिक माइक्रोफॉर्मिंग प्रौद्योगिकियों पर एक समीक्षा". International Journal of Advanced Manufacturing Technology. 67 (9): 2411–2437. doi:10.1007/s00170-012-4661-7. S2CID 110879846.


अग्रिम पठन

Journals

  • Journal of Microelectromechanical Systems (J.MEMS)
  • Sensors and Actuators A: Physical
  • Sensors and Actuators B: Chemical
  • Journal of Micromechanics and Microengineering
  • Lab on a Chip
  • IEEE Transactions of Electron Devices,
  • Journal of Vacuum Science and Technology A: Vacuum, Surfaces, Films
  • Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena

Books

  • Introduction to Microfabrication (2004) by S. Franssila. ISBN 0-470-85106-6
  • Fundamentals of Microfabrication (2nd ed, 2002) by M. Madou. ISBN 0-8493-0826-7
  • Micromachined Transducers Sourcebook by Gregory Kovacs (1998)
  • Brodie & Murray: The Physics of Microfabrication (1982),
  • Nitaigour Premchand Mahalik (2006) "Micromanufacturing and Nanotechnology", Springer, ISBN 3-540-25377-7
  • D. Widmann, H. Mader, H. Friedrich: Technology of Integrated Circuits (2000),
  • J. Plummer, M.Deal, P.Griffin: Silicon VLSI Technology (2000),
  • G.S. May & S.S. Sze: Fundamentals of Semiconductor Processing (2003),
  • P. van Zant: Microchip Fabrication (2000, 5th ed),
  • R.C. Jaeger: Introduction to Microelectronic Fabrication (2001, 2nd ed),
  • S. Wolf & R.N. Tauber: Silicon Processing for the VLSI Era, Vol 1: Process technology (1999, 2nd ed),
  • S.A. Campbell: The Science and Engineering of Microelectronic Fabrication (2001, 2nd ed)
  • T. Hattori: Ultraclean Surface Processing of Silicon Wafers : Secrets of VLSI Manufacturing
  • (2004)Geschke, Klank & Telleman, eds.: Microsystem Engineering of Lab-on-a-chip Devices, 1st ed, John Wiley & Sons. ISBN 3-527-30733-8.
  • Micro- and Nanophotonic Technologies (2017) eds: Patrick Meyrueis, Kazuaki Sakoda, Marcel Van de Voorde. John Wiley & Sons.ISBN 978-3-527-34037-8


इस पेज में लापता आंतरिक लिंक की सूची

  • एकीकृत परिपथ
  • उत्पादन
  • पदार्थ विज्ञान
  • microfluidics
  • भौतिक विज्ञान
  • एचिंग
  • सौर सेल
  • भौतिकी का इतिहास
  • मुद्रांकन (धातु कार्य)
  • कई जोखिम
  • भौतिक रूप से वाष्प का जमाव
  • रासायनिक वाष्प निक्षेपन
  • आणविक प्रसार
  • नमी
  • आरसीए साफ
  • बोलिंग एले
  • कोशिका विज्ञान)

बाहरी संबंध