मोनिक बहुपद

From Vigyanwiki
Revision as of 17:47, 22 December 2022 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

बीजगणित में, एक मोनिक बहुपद एक एकल-चर बहुपद है (अर्थात,यह एक अविभाज्य बहुपद) जिसमें अग्रणी गुणांक (उच्चतम अंश का अशून्य गुणांक) 1 के बराबर है। इसलिए, यह एक मोनिक बहुपद का रूप है:[1]


अविभाजित बहुपद

यदि एक बहुपद में केवल एक अनिश्चित चर (अविभाजित बहुपद) है, तो शब्द सामान्यतः या तो उच्चतम अंश से निम्नतम अंश ("अवरोही शक्तियां") या निम्नतम अंश से उच्चतम अंश ("आरोही शक्तियां") में लिखे जाते हैं। यहाँ x, अंश n के ऊपर सामान्यतः एक अविभाज्य बहुपद के रूप में प्रदर्शित किया जाता है, जहां

cn ≠ 0, cn−1, . . . . . . . . . . . . . . . . . . . . . , c2, c1 and c0

स्थिरांक हैं, बहुपद के गुणांक हैं।

यहाँ पद cnxn अग्रणी पद कहलाता है, और इसका गुणांक cn अग्रणी गुणांक कहलाता है; यदि अग्रणी गुणांक 1 है, तो इसके अविभाज्य बहुपद को मोनिक कहा जाता है।

गुण

गुणक रूप से सीमित

सभी मोनिक बहुपदों का समूह (किसी दिए गए (एकात्मक) वलय A पर और दिए गए चर x के लिए) गुणन के अन्तर्गत सीमित है, क्योंकि दो मोनिक बहुपदों के अग्रणी शब्दों का गुणन उनके गुणन का अग्रणी शब्द है। इस प्रकार, मोनिक बहुपदों का गुणक अर्द्धसमूह बहुपद वलय A[x] बनाते हैं। वस्तुतः, चूंकि निरंतर बहुपद 1 मोनिक है, इसलिए यह अर्द्धसमूह एक मोनोइड भी है।

आंशिक रूप से सुव्यवस्थित

सभी मोनिक बहुपदों (दिए गए वलय के ऊपर) के समुच्चय के विभाज्यता संबंध का प्रतिबंध एक आंशिक क्रम है, और इस प्रकार यह समूह एक पॉसेट बनाता है। इसका कारण यह है कि यदि p(x), q(x) को विभाजित करता है और q(x), p(x) को दो मोनिक बहुपदों p और q के लिए विभाजित करता है, तो p और q बराबर होने चाहिए और यह संबंधित गुणधर्म सामान्य रूप से बहुपदों के लिए सही नहीं है,यदि वलय में विपरीत अवयव 1 के अतिरिक्त होते हैं।

बहुपद समीकरण हल

अन्य स्थितियों में, मोनिक बहुपदों और उनके संबंधित मोनिक बहुपद समीकरणों के गुण महत्वपूर्ण रूप से गुणांक वलय A पर निर्भर करते हैं। यदि A एक क्षेत्र है, तो प्रत्येक अशून्य बहुपद p में पूर्णतः एक संबंधित मोनिक बहुपद q विभाजित p होता है जो इसके अग्रणी गुणांक से विभाजित होता है। इस प्रकार से, किसी भी गैर-नगण्य बहुपद समीकरण p(x) = 0 को एक समतुल्य मोनिक समीकरण q(x) = 0 द्वारा प्रतिस्थापित किया जा सकता है। उदाहरण के लिए, सामान्यतः वास्तविक दूसरी अंश समीकरण

(जहाँ )

द्वारा प्रतिस्थापित किया जा सकता है

,

जहाँ p = b/a  और  q = c/a को प्रतिस्थापित करके। इस प्रकार, समीकरण

मोनिक समीकरण के बराबर है

इस प्रकार सामान्य द्विघात हल सूत्र का अधिक सरलीकृत रूप है:


समाकलन

दूसरे शब्दो में, यदि गुणांक वलय एक क्षेत्र नहीं है, तो अधिक आवश्यक अंतर हैं। उदाहरण के लिए,एक मोनिक बहुपद समीकरण में पूर्णांक गुणांक के परिमेय हल नहीं हो सकते हैं जो पूर्णांक नहीं हैं। इस प्रकार, समीकरण

संभवतः कुछ परिमेय मूल हो सकते हैं, जो पूर्णांक नहीं है, (और संयोगवश इसका एक मूल -1/2 है); जबकि समीकरण

तथा

केवल पूर्णांक हल या अपरिमेय संख्या हल हो सकते हैं।

मोनिक बहुपदों के मूल पूर्णांक गुणांक वाले बीजगणितीय पूर्णांक कहलाते हैं।

बीजगणितीय संख्या सिद्धांत के लिए, एक अभिन्न क्षेत्र पर मोनिक बहुपद समीकरणों के हल अभिन्न विस्तार और अभिन्न रूप से सीमित क्षेत्र के सिद्धांत में महत्वपूर्ण हैं। सामान्यतः, मान लें कि A एक अभिन्न क्षेत्र है, और अभिन्न क्षेत्र B का एक उपसमूह भी है। B के उपसमूह C पर विचार करें, जिसमें B अवयव सम्मिलत हैं, जो कि A पर मोनिक बहुपद समीकरणों को संतुष्ट करते हैं:

समुच्चय C में A के अवयव है, चूँकि कोई भी a ∈ A समीकरण के लिए x − a = 0 को संतुष्ट करता है। इसके अतिरिक्त, यह सिद्ध करना संभव है कि C जोड़ और गुणा के अंतर्गत सीमित है। और इस प्रकार, C, B का एक उप-वलय है। वलय C को B में A का अभिन्न्य संवरण कहा जाता है; या केवल  A का अभिन्न संवरण, यदि B,  A का अंश क्षेत्र है; और C के अवयवों को A पर समाकलित कहा जाता है। यदि यहाँ (पूर्णांकों का वलय) और (जटिल संख्याओं का क्षेत्र), तो C बीजगणितीय पूर्णांक का वलय है।

अलघुकरणीयता

यदि p एक अभाज्य संख्या है, तो परिमित क्षेत्र में अंश n के मोनिक अलघुकरणीयता बहुपदों की संख्या , p के साथ अंकमाला गिनती समारोह के बराबर है। [2]और यदि अब यह मोनिक होने के तथ्य को अस्पष्ट कर दे, तो यह संख्या .

इन मोनिक अलघुकरणीय बहुपदों की मूलो की कुल संख्या है और यहाँ क्षेत्र के तत्वों की संख्या (साथ तत्व) है जो किसी छोटे क्षेत्र से संबंधित नहीं हैं।

इसके लिये p = 2, ऐसे बहुपद सामान्यतः छद्म आयामी बाइनरी अनुक्रम उत्पन्न करने के लिए उपयोग किए जाते हैं।[citation needed]


बहुभिन्नरूपी बहुपद

सामान्यतः, मोनिक शब्द का उपयोग कई चर वाले बहुपदों के लिए नहीं किया जाता है। यद्यपि इनका प्रयोग गुणांक में अन्य बहुपद होने के साथ कई चर में एक बहुपद को केवल अंतिम चर में बहुपद के रूप में व्यक्त किया जा सकता है। यह कई विधियों से किया जा सकता है, जैसे यह इस तथ्य पर निर्भर करता है कि किस चर को अंतिम के रूप में चुना गया है। जैसे, वास्तविक बहुपद

मोनिक है, जिसे R[y] [x] में एक अवयव के रूप में व्यक्त किया जाता है, यानी, चर x में एक अविभाजित बहुपद के रूप में, गुणांक के साथ जो स्वयं चर y में अविभाजित बहुपद हैं :

;

लेकिन p(x, y) एक अवयव R[x] [y] में मोनिक के रूप में मोनिक नहीं है, तब उच्चतम अंश गुणांक 2x − 1(यानी, y2 गुणांक) है।

यह एक वैकल्पिक परिपाटी है, जो उपयोगी हो सकती है, उदाहरण के लिए  ग्रोबनेर आधार के संदर्भों में: एक बहुपद को मोनिक कहा जाता है, यदि इसका अग्रणी गुणांक (एक बहुभिन्नरूपी बहुपद के रूप में) 1 है। दूसरे शब्दों में, मान लें कि p = p(x1,. . . . . . . . . . . . .,xn), n चरों वाला एक अशून्य बहुपद है, और यह इन सभी चरों में सभी ("मोनिक") एकपदी के समुच्चय पर एक दिया गया एकपदी क्रम है, यानी, मुक्त क्रम विनिमेय एकाभ का कुल क्रम,उत्पन्न किया गया x1. . . . . . . . . . . . . . . . . ,xn  निम्नतम तत्व के रूप में इकाई के साथ, और गुणन के बीच संबंध को व्यक्त करता है। उस स्थिति में, यह तथ्य अवयव p में उच्चतम गैर-लुप्त होने वाली अवधि को परिभाषित करता है, और इस स्थिति में p को मोनिक कहा जा सकता है, यदि उस शब्द का गुणांक एक है।  

किसी भी परिभाषा के अनुसार मोनिक बहुभिन्नरूपी बहुपद साधारण (अविभाजित) मोनिक बहुपदों के साथ कुछ गुणों को साझा करते हैं। विशेष रूप से, मोनिक बहुपदों का गुणन पुनः मोनिक है।

यह भी देखें

उद्धरण

  1. Fraleigh 2003, p. 432, Under the Prop. 11.29.
  2. Jacobson, Nathan (2009). "4.13". मूल बीजगणित (2nd ed.). Mineola, N.Y.: Dover. ISBN 978-0-486-47189-1. OCLC 294885194.


इस पेज में लापता आंतरिक लिंक की सूची

  • नेतृत्व गुणांक
  • अंगूठी (गणित)
  • बहुपद की अंगूठी
  • विभाज्यता (अंगूठी सिद्धांत)
  • आंशिक आदेश
  • उलटा तत्व
  • अभिन्न सीमित
  • अलघुकरणीय बहुपद
  • अभाज्य संख्या
  • हार (संयोजन)
  • छद्म आयामी द्विआधारी अनुक्रम

संदर्भ