डेसीमल प्रतिनिधित्व

From Vigyanwiki
Revision as of 11:28, 13 December 2022 by alpha>Saurabh

एक गैर-ऋणात्मक वास्तविक संख्या r का एक दशमलव प्रतिनिधित्व इसकी अभिव्यक्ति है जो परंपरागत रूप से एकल विभाजक के साथ लिखे गए दशमलव अंकों वाले प्रतीकों के अनुक्रम के रूप में है:

यहां . दशमलव विभाजक है, k एक गैर-ऋणात्मक पूर्णांक है, और अंक हैं, जो 0, ..., 9 की श्रेणी में पूर्णांकों का प्रतिनिधित्व करने वाले प्रतीक हैं।

सामान्यतः, यदि का क्रम —बिंदु के बाद के अंक—सामान्यतः परिमित अनुक्रम होते हैं। यदि यह परिमित है, तो लापता अंकों को 0 माना जाता है। यदि सभी 0 हैं विभाजक भी छोड़ दिया जाता है, जिसके परिणामस्वरूप अंकों का एक परिमित अनुक्रम होता है, जो एक प्राकृतिक संख्या का प्रतिनिधित्व करता है।

दशमलव प्रतिनिधित्व अनंत योग का प्रतिनिधित्व करता है:

प्रत्येक गैर ऋणात्मक वास्तविक संख्या में कम से कम एक ऐसा निरूपण होता है; इसमें इस तरह के दो प्रतिनिधित्व हैं ( यदि के साथ) यदि और केवल अगर किसी के पास अनुगामी अनंत है अनुक्रम 0 है, और दूसरे में 9 का अनुगामी अनंत क्रम है। गैर-नकारात्मक वास्तविक संख्याओं और दशमलव निरूपण के बीच एक-से-एक पत्राचार होने के लिए, 9 के अनुगामी अनंत अनुक्रम वाले दशमलव निरूपण को कभी-कभी बाहर रखा जाता है।[1]


पूर्णांक और भिन्नात्मक भाग

प्राकृतिक संख्या , को r का पूर्णांक भाग कहा जाता है, और इस लेख के शेष भाग में a0 द्वारा निरूपित किया जाता है। जो का क्रम संख्या को दर्शाता है

जो अंतराल (गणित) से संबंधित है और इसे r का भिन्नात्मक भाग कहा जाता है (जब सभी 9 हों).

परिमित दशमलव सन्निकटन

परिमित दशमलव निरूपण के साथ परिमेय संख्याओं द्वारा किसी भी वास्तविक संख्या को यथार्थता की किसी भी वांछित घात तक अनुमानित किया जा सकता है।

मान लेना. फिर प्रत्येक पूर्णांक के लिए एक परिमित दशमलव ऐसा है कि:

प्रमाण:

माना , जहाँ .

फिर , और परिणाम सभी पक्षों को द्वारा विभाजित करने के बाद आता है.

(तथ्य यह है कि का एक परिमित दशमलव प्रतिनिधित्व आसानी से स्थापित हो जाता है।)

दशमलव प्रतिनिधित्व और नोटेशनल कन्वेंशन की गैर-विशिष्टता

कुछ वास्तविक संख्याएँ में दो अनंत दशमलव निरूपण हैं। उदाहरण के लिए, संख्या 1 को समान रूप से 1.000... के रूप में 0.999... द्वारा दर्शाया जा सकता है (जहां अनुगामी 0 या 9 के अनंत क्रम क्रमशः "..." द्वारा दर्शाए जाते हैं)। परंपरागत रूप से, 9 के बाद के बिना दशमलव प्रतिनिधित्व को प्राथमिकता दी जाती है। इसके अतिरिक्त, के मानक दशमलव निरूपण में, दशमलव बिंदु को छोड़े जाने के बाद पीछे आने वाले 0 का एक अनंत अनुक्रम, दशमलव बिंदु के साथ ही यदि एक पूर्णांक है।

के दशमलव विस्तार के निर्माण के लिए कुछ प्रक्रियाएँ 9 के अनुगामी होने की समस्या से बच जाएँगी। उदाहरण के लिए, निम्नलिखित कलां विधि प्रक्रिया मानक दशमलव प्रतिनिधित्व देगी: दिया हुआ , हम ( का पूर्णांक भाग) को सबसे बड़ा पूर्णांक इस तरह परिभाषित करते हैं कि (अर्थात।, ). यदि प्रक्रिया समाप्त हो जाती है। अन्यथा, के लिए पहले ही मिल चुका है, हम को विवेचनात्मक रूप से सबसे बड़े पूर्णांक के रूप में परिभाषित करते हैं जैसे कि:

 

 

 

 

(*)

जब भी इस तरह पाया जाता है कि समानता (*)(*); अन्यथा, अन्यथा, यह दशमलव अंकों का अनंत क्रम देने के लिए अनिश्चित काल तक जारी रहता है यह दिखाया जा सकता है कि [2](पारंपरिक रूप से ) लिखा गया है, जहाँ और अऋणात्मक पूर्णांक दशमलव संकेतन में दर्शाया गया है। उपरोक्त प्रक्रिया को पर लागू करके और परिणामी दशमलव प्रसार को और इसके द्वारा परिणामी दशमलव प्रसार को निरूपित करते हैं.

प्रकार

परिमित

गैर-ऋणात्मक वास्तविक संख्या x का दशमलव विस्तार शून्य (या नाइन) में समाप्त होगा यदि, और केवल यदि, x एक परिमेय संख्या है जिसका हर 2n5m,के रूप का है जहाँ m और n गैर-ऋणात्मक पूर्णांक हैं।

'प्रमाण':

यदि x का दशमलव विस्तार शून्य में समाप्त हो होगा, या

किसी n के लिए, तो x का हर 10n = 2n5n के रूप का होता है.

इसके विपरीत, यदि x का हर 2n5m,

कुछ p के लिए

जबकि x रूप का है ,

कुछ n के लिए

द्वारा , x शून्य में समाप्त होगा।

अनंत

दोहराए जाने वाले दशमलव अभ्यावेदन

कुछ वास्तविक संख्याओं में दशमलव विस्तार होते हैं जो अंततः एक या अधिक अंकों के अनुक्रम को दोहराते हुए लूप में आते हैं:

1/3 = 0.33333...
1/7 = 0.142857142857...
1318/185 = 7.1243243243...

हर बार ऐसा होने पर संख्या अभी भी एक परिमेय संख्या होती है (अर्थात वैकल्पिक रूप से पूर्णांक और धनात्मक पूर्णांक के अनुपात के रूप में प्रदर्शित की जा सकती है)। इसका विलोम भी सत्य है: एक परिमेय संख्या का दशमलव प्रसार या तो परिमित होता है, या अंतहीन रूप से आवर्ती होता है।

अंश में रूपांतरण

एक परिमेय संख्या के प्रत्येक दशमलव निरूपण को पूर्णांक, गैर-दोहराए जाने वाले और दोहराए जाने वाले भागों के योग में परिवर्तित करके और फिर उस योग को एक सामान्य भाजक के साथ एकल अंश में परिवर्तित करके एक अंश में परिवर्तित किया जा सकता है।

उदाहरण के लिए को भिन्न में बदलने के लिए लेम्मा टिप्पणियाँ करता है:

इस प्रकार एक निम्नानुसार परिवर्तित होता है:
यदि कोई दोहराए जाने वाले अंक नहीं हैं, तो यह मान लिया जाता है कि हमेशा के लिए 0 दोहराया जाता है, उदा। , हालांकि यह दोहराए जाने वाले शब्द को शून्य बनाता है, योग दो शब्दों और एक सरल रूपांतरण के लिए सरल हो जाता है।

उदाहरण के लिए:


यह भी देखें

  • दशमलव
  • श्रृंखला (गणित)
  • आईईईई 754
  • साइमन स्टीविन#दशमलव अंश

संदर्भ

  1. Knuth, Donald Ervin (1973). The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley. p. 21.
  2. Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. p. 11. ISBN 0-07-054235-X.


इस पेज में लापता आंतरिक लिंक की सूची

अग्रिम पठन

सीकेबी:नवंदनी दादाई