बॉयलर (विद्युत उत्पादन)

From Vigyanwiki
Revision as of 13:56, 13 December 2022 by alpha>Indicwiki (Created page with "{{Short description|High pressure steam generator}} {{other uses|Boiler (disambiguation)}} {{Cleanup rewrite|date=January 2022}} file:Dampfkessel für eine Stationärdampfma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एक औद्योगिक बॉयलर, जिसका उपयोग मूल रूप से एक स्थिर स्टीम इंजन के लिए भाप की आपूर्ति के लिए किया जाता है

एक बॉयलर या स्टीम जनरेटर एक उपकरण है जिसका उपयोग पानी के लिए गर्मी ऊर्जा लागू करके भाप बनाने के लिए किया जाता है।यद्यपि परिभाषाएँ कुछ लचीली हैं, यह कहा जा सकता है कि पुराने स्टीम जनरेटर को आमतौर पर 'बॉयलर' 'कहा जाता था और मध्यम दबाव में कम काम किया जाता है (7–2,000 kPa or 1–290 psi) लेकिन, इसके ऊपर दबाव में, स्टीम जनरेटर की बात करना अधिक सामान्य है।

एक बॉयलर या स्टीम जनरेटर का उपयोग किया जाता है जहां भी भाप के स्रोत की आवश्यकता होती है।फॉर्म और आकार एप्लिकेशन पर निर्भर करता है: मोबाइल भाप का इंजन जैसे कि भाप गतिविशिष्ट , पोर्टेबल इंजन और कर्षण इंजन स्टीम-पावर्ड रोड वाहन आमतौर पर एक छोटे बॉयलर का उपयोग करते हैं जो वाहन का एक अभिन्न अंग बनाता है;स्थिर स्टीम इंजन, औद्योगिक प्रतिष्ठान और पावर स्टेशनों में आमतौर पर पाइपिंग द्वारा पॉइंट-ऑफ-यूज से जुड़े एक बड़े अलग-अलग स्टीम जनरेटिंग सुविधा होती है।एक उल्लेखनीय अपवाद स्टीम-पावर्ड फायरलेस लोकोमोटिव है, जहां अलग-अलग-जनित भाप को लोकोमोटिव पर एक रिसीवर (टैंक) में स्थानांतरित किया जाता है।

एक प्राइम मूवर के एक घटक के रूप में

कोयला से चलने वाला बिजली संयंत्र

स्टीम जनरेटर या स्टीम बॉयलर एक स्टीम इंजन का एक अभिन्न घटक है जब एक प्राइम मूवर (लोकोमोटिव) माना जाता है।हालांकि इसे अलग से इलाज करने की आवश्यकता है, क्योंकि कुछ हद तक विभिन्न प्रकार के जनरेटर प्रकारों को विभिन्न प्रकार के इंजन इकाइयों के साथ जोड़ा जा सकता है।एक बॉयलर ईंधन को जलाने और गर्मी उत्पन्न करने के लिए एक फायरबॉक्स (स्टीम इंजन) या औद्योगिक भट्ठी को शामिल करता है।उबलने की प्रक्रिया को भाप बनाने के लिए उत्पन्न गर्मी को पानी में स्थानांतरित किया जाता है।यह एक दर पर संतृप्त भाप पैदा करता है जो उबलते पानी के ऊपर दबाव के अनुसार भिन्न हो सकता है।भट्ठी का तापमान जितना अधिक होगा, तेजी से भाप उत्पादन।इस प्रकार उत्पन्न संतृप्त भाप तब या तो एक टर्बोजेरेटर के माध्यम से बिजली का उत्पादन करने के लिए तुरंत उपयोग किया जा सकता है, या फिर एक उच्च तापमान के लिए आगे सुपरहेटर हो सकता है;यह विशेष रूप से निलंबित पानी की सामग्री को कम करता है, जो कि भाप की एक मात्रा को अधिक काम करता है और अधिक काम करता है और अधिक तापमान ढाल बनाता है, जो संक्षेपण बनाने की क्षमता को कम करने में मदद करता है।दहन गैस ों में किसी भी शेष गर्मी को तब या तो खाली किया जा सकता है या एक अर्थशास्त्री से गुजरने के लिए बनाया जा सकता है, जिसकी भूमिका बॉयलर तक पहुंचने से पहले फ़ीड पानी को गर्म करने के लिए है।

प्रकार


HAYCOCK और वैगन टॉप बॉयलर

1712 के पहले न्यूकमेन इंजन के लिए, बॉयलर पावर सिलेंडर के नीचे स्थापित बड़े ब्रेवर के केतली से थोड़ा अधिक था।क्योंकि इंजन की शक्ति भाप के संक्षेपण द्वारा उत्पादित खालीपन से ली गई थी, आवश्यकता बहुत कम दबाव में भाप के बड़े संस्करणों के लिए थी 1 psi (6.9 kPa) पूरे बॉयलर को ईंटवर्क में सेट किया गया जिसने कुछ गर्मी को बनाए रखा।एक वॉल्यूमिनस कोयला आग को थोड़ा डेस पैन के नीचे एक कृतज्ञता पर जलाया गया था, जो एक बहुत कम हीटिंग सतह देता था;इसलिए चिमनी को बर्बाद कर दिया था।बाद के मॉडलों में, विशेष रूप से जॉन स्मेटन द्वारा, गैसों को गर्म करने के द्वारा हीटिंग सतह को काफी बढ़ा दिया गया था, जिससे बॉयलर पक्षों को गर्म किया गया था, जो एक ग्रिप से गुजरता था।Smeaton ने बॉयलर के नीचे एक सर्पिल भूलभुलैया के माध्यम से गैसों के मार्ग को और लंबा कर दिया।इन अंडर-फायर बॉयलर का उपयोग 18 वीं शताब्दी में विभिन्न रूपों में किया गया था।कुछ राउंड सेक्शन (हैकॉक) के थे।एक आयताकार योजना पर एक लंबा संस्करण 1775 के आसपास बोल्टन और वाट (वैगन टॉप बॉयलर) द्वारा विकसित किया गया था।यह वह है जो आज तीन-पास बॉयलर के रूप में जाना जाता है, आग को नीचे की ओर गर्म करना, गैसों को फिर एक केंद्रीय वर्ग-खंड ट्यूबलर फ्लू से गुजरना और अंत में बॉयलर पक्षों के चारों ओर गुजर रहा है।

बेलनाकार अग्नि-ट्यूब बॉयलर

बेलनाकार रूप के एक शुरुआती प्रस्तावक ब्रिटिश इंजीनियर जॉन ब्लेकी थे, जिन्होंने 1774 में अपने डिजाइन का प्रस्ताव रखा था।[1][2] एक अन्य शुरुआती प्रस्तावक अमेरिकी इंजीनियर, ओलिवर इवांस थे, जिन्होंने ठीक ही माना कि बेलनाकार रूप यांत्रिक प्रतिरोध के दृष्टिकोण से सबसे अच्छा था और 18 वीं शताब्दी के अंत की ओर इसे अपनी परियोजनाओं में शामिल करना शुरू किया।[citation needed] संभवतः ल्यूपोल्ड की उच्च दबाव वाली इंजन योजना पर लेखन से प्रेरित होकर 1725 से इनसाइक्लोपीडिक कार्यों में दिखाई दिया, इवांस ने मजबूत भाप यानी गैर-संघनित इंजनों का पक्ष लिया, जिसमें अकेले भाप के दबाव ने पिस्टन को निकाल दिया और फिर वातावरण के लिए थक गया।मजबूत भाप का लाभ जैसा कि उन्होंने देखा कि यह था कि अधिक काम भाप के छोटे संस्करणों द्वारा किया जा सकता है;इसने सभी घटकों को आकार में कम करने में सक्षम बनाया और इंजनों को परिवहन और छोटे प्रतिष्ठानों के लिए अनुकूलित किया जा सकता है।इसके लिए उन्होंने एक लंबा बेलनाकार गढ़ा हुआ लोहे की क्षैतिज बॉयलर विकसित किया, जिसमें एक एकल फायर ट्यूब को शामिल किया गया था, जिसमें से एक छोर पर गेट फायरिंग रखी गई थी।गैस का प्रवाह तब बॉयलर बैरल के नीचे एक मार्ग या फ्लू में उलट गया था, फिर चिमनी (कोलंबियन इंजन बॉयलर) में फिर से जुड़ने के लिए साइड फ्लूज़ के माध्यम से लौटने के लिए विभाजित किया गया था।इवांस ने अपने बेलनाकार बॉयलर को कई इंजनों में शामिल किया, दोनों स्थिर और मोबाइल।अंतरिक्ष और वजन के विचारों के कारण बाद में फायर ट्यूब से चिमनी तक सीधे एक-पास थका हुआ था।उस समय मजबूत भाप का एक और प्रस्तावक कॉर्निशमैन, रिचर्ड ट्रेविथिक था।उनके बॉयलर ने काम किया 40–50 psi (276–345 kPa) और पहले गोलार्द्ध के बाद बेलनाकार रूप में थे।1804 के बाद से ट्रेविथिक ने अर्ध-पोर्टेबल और लोकोमोटिव इंजन के लिए एक छोटे से दो-पास या रिटर्न फ्ल्यू बॉयलर का उत्पादन किया।रिचर्ड ट्रेविथिक द्वारा 1812 के आसपास विकसित कॉर्निश बॉयलर दोनों साधारण बॉयलर की तुलना में अधिक मजबूत और अधिक कुशल था जो इससे पहले था।इसमें चारों ओर एक बेलनाकार पानी की टंकी शामिल थी 27 feet (8.2 m) लंबे और 7 feet (2.1 m) व्यास में, और एक कोयले की आग को एक एकल बेलनाकार ट्यूब के एक छोर पर लगभग तीन फीट चौड़ा रखा गया था जो टैंक के अंदर अनुदैर्ध्य रूप से पारित किया गया था।आग को एक छोर से झुकाया गया था और इसमें से गर्म गैसें ट्यूब के साथ और दूसरे छोर से बाहर यात्रा की गईं, बाहर के साथ चलने वाले फ्लू के साथ वापस परिचालित किए जाने के लिए फिर एक चिमनी में निष्कासित होने से पहले बॉयलर बैरल के नीचे तीसरी बार।बाद में एक और 3-पास बॉयलर, लंकाशायर बॉयलर द्वारा सुधार किया गया, जिसमें अलग-अलग ट्यूबों में भट्टियों की एक जोड़ी थी।यह एक महत्वपूर्ण सुधार था क्योंकि प्रत्येक भट्ठी को अलग -अलग समय पर स्टॉक किया जा सकता था, जिससे एक को साफ किया जा सकता था जबकि दूसरा काम कर रहा था।

रेलवे लोकोमोटिव बॉयलर आमतौर पर 1-पास प्रकार के होते थे, हालांकि शुरुआती दिनों में, 2-पास रिटर्न फ्ल्यू बॉयलर आम थे, विशेष रूप से टिमोथी हैकवर्थ द्वारा निर्मित लोकोमोटिव के साथ।

मल्टी-ट्यूब बॉयलर

1828 में फ्रांस में एक महत्वपूर्ण कदम आया जब मार्क सेगिन ने दो-पास बॉयलर को तैयार किया, जिसमें दूसरा पास कई ट्यूबों के एक बंडल द्वारा बनाया गया था।समुद्री उद्देश्यों के लिए उपयोग किए जाने वाले प्राकृतिक प्रेरण के साथ एक समान डिजाइन लोकप्रिय स्कॉच मरीन बॉयलर था।

1829 हेनरी बूथ के रेनहिल ट्रायल से पहले, लिवरपूल और मैनचेस्टर रेलवे के कोषाध्यक्ष ने जॉर्ज स्टीफेंसन को सुझाव दिया था, एक बहु-ट्यूब वन-पास क्षैतिज बॉयलर के लिए एक योजना दो इकाइयों से बना: एक फायरबॉक्स (स्टीम इंजन) जल स्थानों से घिरा हुआ है।और एक बॉयलर बैरल जिसमें दो दूरबीन के छल्ले होते हैं, जिनके अंदर 25 कॉपर ट्यूब लगे थे;ट्यूब बंडल ने बैरल में पानी की जगह पर बहुत अधिक कब्जा कर लिया और गर्म गर्मी हस्तांतरण में काफी सुधार किया।ओल्ड जॉर्ज ने तुरंत अपने बेटे रॉबर्ट को योजना का संचार किया और यह स्टीफेंसन के रॉकेट पर इस्तेमाल किया जाने वाला बॉयलर था, जो परीक्षण के एकमुश्त विजेता था।डिजाइन ने बाद के सभी स्टीफेंसनियन-निर्मित लोकोमोटिव के लिए आधार का गठन किया, तुरंत अन्य कंस्ट्रक्टरों द्वारा लिया गया;फायर-ट्यूब बॉयलर का यह पैटर्न तब से बनाया गया है।

संरचनात्मक प्रतिरोध

1712 बॉयलर को पहले उदाहरणों में सीसे से बना एक गुंबददार टॉप के साथ रिवेटेड कॉपर प्लेटों से इकट्ठा किया गया था।बाद में बॉयलर छोटे गढ़े हुए लोहे की प्लेटों से बने थे।समस्या बड़ी प्लेटों का उत्पादन कर रही थी, ताकि आसपास के दबाव भी 50 psi (344.7 kPa) बिल्कुल सुरक्षित नहीं थे, न ही कच्चा लोहा गोलार्द्ध बॉयलर शुरू में रिचर्ड ट्रेविथिक द्वारा उपयोग किया गया था।छोटी प्लेटों के साथ यह निर्माण 1820 के दशक तक बनी रही, जब बड़ी प्लेटें संभव हो गईं और एक बेलनाकार रूप में लुढ़का जा सकता है, जिसमें केवल एक बट-संयुक्त सीम के साथ एक गसिट प्लेट द्वारा प्रबलित किया गया था;1849 के टिमोथी हैकवर्थ के सैंस पेरिल 11 में एक अनुदैर्ध्य वेल्डेड सीम था।[3] लोकोमोटिव बॉयलर के लिए वेल्डेड निर्माण को पकड़ने के लिए बेहद धीमा था।

डोबल, लामोंट और प्रिटचार्ड द्वारा उपयोग किए जाने वाले मोनोट्यूबुलर वाटर ट्यूब बॉयलर के माध्यम से एक बार, काफी दबाव को समझने और विस्फोट के खतरे के बिना इसे जारी करने में सक्षम हैं।

दहन

बॉयलर के लिए गर्मी का स्रोत कई ईंधन में से किसी एक का दहन है, जैसे कि लकड़ी , कोयला , तेल या प्राकृतिक गैस परमाणु विखंडन का उपयोग भाप पैदा करने के लिए गर्मी स्रोत के रूप में भी किया जाता है।गर्मी पुनः प्राप्त करने वाला भाप जेनरेटार (HRSGs) गैस टर्बाइन जैसी अन्य प्रक्रियाओं से खारिज की गई गर्मी का उपयोग करें।

ठोस ईंधन फायरिंग

आग की इष्टतम जलने की विशेषताओं को बनाने के लिए, हवा को दोनों के माध्यम से, और आग के ऊपर दोनों की आपूर्ति करने की आवश्यकता होती है।अधिकांश बॉयलर अब प्राकृतिक चिमनी ड्राफ्ट के बजाय यांत्रिक ड्राफ्ट उपकरणों पर निर्भर करते हैं।इसका कारण यह है कि प्राकृतिक मसौदा बाहरी हवा की स्थिति और भट्ठी छोड़ने वाले ग्रिप गैसों के तापमान के साथ -साथ चिमनी की ऊंचाई के अधीन है।ये सभी कारक प्रभावी ड्राफ्ट को प्राप्त करने के लिए कठिन बनाते हैं और इसलिए यांत्रिक मसौदा उपकरण को अधिक किफायती बनाते हैं।मैकेनिकल ड्राफ्ट के तीन प्रकार हैं:

  1. प्रेरित ड्राफ्ट: यह तीन तरीकों में से एक प्राप्त किया जाता है, पहले एक गर्म चिमनी का ढेर प्रभाव है, जिसमें फ्ल्यू गैस बॉयलर के आसपास की परिवेशी हवा की तुलना में कम घनी होती है।परिवेशी वायु सेना के सघन स्तंभ दहन हवा में और बॉयलर के माध्यम से।दूसरी विधि एक स्टीम जेट के उपयोग के माध्यम से है।[[ फ्लू गैस ]] प्रवाह की दिशा में उन्मुख स्टीम जेट या इजेक्टर स्टैक में ग्रिप गैसों को प्रेरित करता है और भट्ठी में समग्र मसौदे को बढ़ाने से अधिक फ्ल्यू गैस वेग की अनुमति देता है।यह विधि स्टीम चालित लोकोमोटिव पर आम थी जिसमें लम्बी चिमनी नहीं हो सकती थी।तीसरी विधि केवल एक प्रेरित ड्राफ्ट फैन (आईडी फैन) का उपयोग करके है जो भट्ठी से बाहर और स्टैक के ऊपर फ्लू गैसों को चूसती है।लगभग सभी प्रेरित ड्राफ्ट भट्टियों पर नकारात्मक दबाव होता है।
  2. मजबूर ड्राफ्ट: ड्राफ्ट एक प्रशंसक (एफडी फैन) और डक्ट-वर्क के माध्यम से भट्ठी में हवा को मजबूर करके प्राप्त किया जाता है।हवा अक्सर एक एयर हीटर से गुजरती है;जैसा कि नाम से पता चलता है, बॉयलर की समग्र दक्षता को बढ़ाने के लिए भट्ठी में जाने वाली हवा को गर्म करता है।भट्ठी में भर्ती हवा की मात्रा को नियंत्रित करने के लिए डैम्पर्स का उपयोग किया जाता है।मजबूर ड्राफ्ट भट्टियों में आमतौर पर एक सकारात्मक दबाव होता है।
  3. संतुलित ड्राफ्ट: संतुलित ड्राफ्ट प्रेरित और मजबूर ड्राफ्ट दोनों के उपयोग के माध्यम से प्राप्त किया जाता है।यह बड़े बॉयलर के साथ अधिक आम है जहां फ्लू गैसों को कई बॉयलर पास के माध्यम से लंबी दूरी की यात्रा करनी होती है।प्रेरित ड्राफ्ट प्रशंसक मजबूर ड्राफ्ट प्रशंसक के साथ मिलकर काम करता है, जिससे भट्ठी के दबाव को वायुमंडलीय से थोड़ा नीचे बनाए रखा जा सकता है।

फायरट्यूब बॉयलर

प्रक्रिया में अगला चरण पानी उबालना और भाप बनाना है।लक्ष्य गर्मी के प्रवाह को गर्मी के स्रोत से पानी तक पूरी तरह से संभव बनाने के लिए है।पानी आग से गर्म एक प्रतिबंधित स्थान में सीमित है।उत्पादित भाप में पानी की तुलना में कम घनत्व होता है और इसलिए पोत में उच्चतम स्तर पर जमा होगा;इसका तापमान उबलते बिंदु पर रहेगा और दबाव बढ़ने के साथ ही बढ़ेगा।इस अवस्था में भाप (तरल पानी के साथ संतुलन में जो बॉयलर के भीतर वाष्पित हो रहा है) को संतृप्त भाप नामित किया गया है।उदाहरण के लिए, वायुमंडलीय दबाव पर संतृप्त भाप उबलता है 100 °C (212 °F)।बॉयलर से ली गई संतृप्त भाप में पानी की बूंदों में प्रवेश किया जा सकता है, हालांकि एक अच्छी तरह से डिज़ाइन किया गया बॉयलर लगभग सूखे संतृप्त भाप की आपूर्ति करेगा, जिसमें बहुत कम प्रवेश किया जाता है।संतृप्त भाप के निरंतर ताप को भाप को एक सुपरहिटेड अवस्था में लाएगा, जहां भाप को संतृप्ति तापमान से ऊपर तापमान तक गर्म किया जाता है, और इस स्थिति के तहत कोई तरल पानी मौजूद नहीं हो सकता है।19 वीं शताब्दी के अधिकांश पारस्परिक भाप इंजनों ने संतृप्त भाप का उपयोग किया, हालांकि आधुनिक स्टीम पावर प्लांट सार्वभौमिक रूप से अतितापित भाप का उपयोग करते हैं जो उच्च भाप चक्र दक्षता की अनुमति देता है।

सुपरहाइटर्स

एक स्टीम लोकोमोटिव पर एक सुपरहीट बॉयलर

प्राइमेशनलपोर्टा सभी प्रकार के स्टीम इंजनों के लिए लागू भाप लोकोमोटिव की दक्षता का निर्धारण करने वाले निम्नलिखित समीकरण देता है−1 )/विशिष्ट भाप की खपत (kg/kw h)।

भाप की अधिक मात्रा को एक निश्चित मात्रा में पानी से उत्पन्न किया जा सकता है।चूंकि आग संतृप्त भाप की तुलना में बहुत अधिक तापमान पर जल रही है, इसलिए यह अधिक गर्मी को एक बार-गठित भाप में स्थानांतरित किया जा सकता है और इसे सुपरहीटिंग करके और पानी की बूंदों को निलंबित कर दिया और अधिक भाप में निलंबित कर दिया और पानी की खपत को बहुत कम कर दिया।

सुपरहेटर एक वातानुकूलन यूनिट पर कॉइल की तरह काम करता है, हालांकि एक अलग छोर तक।स्टीम पाइपिंग (इसके माध्यम से बहने वाली भाप के साथ) को बॉयलर भट्ठी में ग्रिप गैस पथ के माध्यम से निर्देशित किया जाता है।यह क्षेत्र आमतौर पर बीच होता है 1,300–1,600 °C (2,372–2,912 °F)।कुछ सुपरहाइटर्स रेडिएंट प्रकार (थर्मल विकिरण द्वारा गर्मी को अवशोषित करते हैं), अन्य संवहन प्रकार (एक द्रव यानी गैस के माध्यम से गर्मी को अवशोषित करते हैं) और कुछ दो का एक संयोजन हैं।तो क्या संवहन या विकिरण द्वारा बॉयलर भट्ठी/फ्ल्यू गैस पथ में चरम गर्मी भी सुपरहेटर स्टीम पाइपिंग और भाप को भी गर्म करेगी।जबकि सुपरहेटर में भाप का तापमान उठाया जाता है, भाप का दबाव नहीं होता है: टर्बाइन या मूविंग पिस्टन लगातार विस्तारित स्थान प्रदान करते हैं और दबाव बॉयलर के समान रहता है।[4] सुपरहीटिंग स्टीम की प्रक्रिया सबसे महत्वपूर्ण रूप से टरबाइन ब्लेडिंग और/या संबंधित पाइपिंग को नुकसान को रोकने के लिए भाप में प्रवेशित सभी बूंदों को हटाने के लिए डिज़ाइन की गई है।सुपरहेटिंग भाप भाप की मात्रा का विस्तार करती है, जो अधिक शक्ति उत्पन्न करने के लिए भाप की दी गई मात्रा (वजन से) की अनुमति देता है।

जब बूंदों की समग्रता को समाप्त कर दिया जाता है, तो भाप को एक सुपरहिटेड राज्य में कहा जाता है।

एक स्टीफेंसनियन फायरट्यूब लोकोमोटिव बॉयलर में, यह बड़े व्यास के फायरट्यूब के अंदर निलंबित छोटे व्यास के पाइपों के माध्यम से संतृप्त भाप को रूट करता है जो उन्हें फायरबॉक्स से बाहर निकलने वाली गर्म गैसों के संपर्क में डालते हैं;संतृप्त भाप गीले हेडर से फायरबॉक्स की ओर पीछे की ओर बहती है, फिर फिर से सूखे हेडर के लिए आगे बढ़ती है।सुपरहीटिंग केवल वर्ष 1900 के आसपास लोकोमोटिव के लिए आम तौर पर अपनाया जाना शुरू हुआ, क्योंकि सिलेंडर और स्टीम चेस्ट में चलती भागों की ओवरहीटिंग और स्नेहन की समस्याओं के कारण। कई फायरट्यूब बॉयलर पानी को उबालने तक गर्म करते हैं, और फिर भाप का उपयोग दूसरे शब्दों में संतृप्ति तापमान पर किया जाता है, जो किसी दिए गए दबाव (संतृप्त भाप) पर पानी के उबलते बिंदु का तापमान होता है;इसमें अभी भी निलंबन में पानी का एक बड़ा अनुपात है।संतृप्त भाप एक इंजन द्वारा सीधे उपयोग किया जा सकता है, लेकिन जैसा कि निलंबित पानी का विस्तार नहीं हो सकता है और काम कर सकता है और काम का तात्पर्य तापमान गिरने से होता है, इसका उत्पादन करने के लिए खर्च किए गए ईंधन के साथ -साथ काम करने वाले तरल पदार्थ का अधिकांश हिस्सा बर्बाद हो जाता है।

पानी ट्यूब बॉयलर

एक जल-ट्यूब बॉयलर का आरेख

तेजी से भाप का उत्पादन करने का एक और तरीका यह है कि दहन गैसों से घिरे ट्यूब या ट्यूबों में दबाव में पानी को खिलाना।इसका शुरुआती उदाहरण 1820 के दशक के उत्तरार्ध में गोल्ड्सवर्थी गर्न द्वारा स्टीम रोड कैरिज में उपयोग के लिए विकसित किया गया था।यह बॉयलर अल्ट्रा-कॉम्पैक्ट और वजन में हल्का था और यह व्यवस्था तब से समुद्री और स्थिर अनुप्रयोगों के लिए आदर्श बन गई है।ट्यूबों में अक्सर सतह क्षेत्र को अधिकतम करने के लिए बड़ी संख्या में झुकते हैं और कभी -कभी पंख होते हैं।इस प्रकार के बॉयलर को आमतौर पर उच्च दबाव अनुप्रयोगों में पसंद किया जाता है क्योंकि उच्च दबाव वाला पानी/भाप संकीर्ण पाइपों के भीतर समाहित होता है जिसमें एक पतली दीवार के साथ दबाव हो सकता है।हालांकि यह सतह परिवहन उपकरणों में कंपन द्वारा क्षति के लिए अतिसंवेदनशील हो सकता है।एक कच्चा लोहा अनुभागीय बॉयलर में, कभी -कभी पोर्क चॉप बॉयलर कहा जाता है। पानी कच्चा लोहा वर्गों के अंदर समाहित होता है।तैयार बॉयलर बनाने के लिए इन वर्गों को यांत्रिक रूप से साइट पर इकट्ठा किया जाता है।

सुपरक्रिटिकल स्टीम जनरेटर

सुपरक्रिटिकल स्टीम जनरेटर - एक बॉयलर ड्रम की अनुपस्थिति पर ध्यान दें

सुपरक्रिटिकल स्टीम जनरेटर का उपयोग अक्सर विद्युत शक्ति के उत्पादन के लिए किया जाता है।वे सुपर तरल दबाव का संचालन करते हैं।एक उप -राजनीतिक बॉयलर के विपरीत, एक सुपरक्रिटिकल स्टीम जनरेटर इतने उच्च दबाव (ओवर) पर संचालित होता है 3,200 psi or 22.06 MPa) कि वास्तविक उबलते हुए, बॉयलर में कोई तरल पानी नहीं होता है - भाप पृथक्करण।पानी के भीतर भाप के बुलबुले की कोई पीढ़ी नहीं है, क्योंकि दबाव महत्वपूर्ण तापमान और दबाव से ऊपर है जिस पर भाप के बुलबुले बन सकते हैं।यह महत्वपूर्ण बिंदु के नीचे से गुजरता है क्योंकि यह एक उच्च दबाव टरबाइन में काम करता है और जनरेटर के कंडेनसर (हीट ट्रांसफर) में प्रवेश करता है।इससे थोड़ा कम ईंधन का उपयोग होता है और इसलिए ग्रीनहाउस गैस उत्पादन कम होता है।बॉयलर शब्द का उपयोग सुपरक्रिटिकल प्रेशर स्टीम जनरेटर के लिए नहीं किया जाना चाहिए, क्योंकि वास्तव में इस डिवाइस में कोई उबलना नहीं होता है।

जल उपचार

बॉयलर फीडवाटर के डिमिनरलाइजेशन में उपयोग किए जाने वाले बड़े उद्धरण/आयन आयन विनिमय [5]

बॉयलर के लिए फ़ीड पानी को कम से कम निलंबित ठोस और भंग अशुद्धियों के साथ जितना संभव हो उतना शुद्ध होना चाहिए, जो भाप के साथ संक्षारण, झाग और पानी ले जाने वाला होता है।बॉयलर फीडवाटर के डिमिनरलाइजेशन के लिए सबसे आम विकल्प विपरीत परासरण (आरओ) और आयन एक्सचेंज (IX) हैं।[6]


सुरक्षा

जब पानी को भाप में परिवर्तित किया जाता है तो यह 1,600 बार मात्रा में फैलता है और 25 मीटर/से अधिक पर स्टीम पाइप की यात्रा करता है।इस वजह से, स्टीम एक केंद्रीय बॉयलर हाउस से एक साइट के चारों ओर ऊर्जा और गर्मी को आगे बढ़ाने का एक अच्छा तरीका है जहां इसकी आवश्यकता होती है, लेकिन सही बॉयलर के बिना पानी के उपचार को खिलाने के बिना, एक भाप-बढ़ाने वाला पौधा पैमाने के गठन और जंग से पीड़ित होगा।सबसे अच्छी तरह से, यह ऊर्जा की लागत को बढ़ाता है और खराब गुणवत्ता वाली भाप, कम दक्षता, कम पौधे जीवन और एक ऑपरेशन जो अविश्वसनीय है, को जन्म दे सकता है।सबसे खराब, यह विनाशकारी विफलता और जीवन की हानि का कारण बन सकता है।जबकि मानकों में भिन्नता विभिन्न देशों में मौजूद हो सकती है, ऐसी घटनाओं को कम करने या रोकने के लिए कड़े कानूनी, परीक्षण, प्रशिक्षण और प्रमाणन लागू किया जाता है।विफलता मोड में शामिल हैं:

  • बॉयलर का अतिवृद्धि
  • बॉयलर में अपर्याप्त पानी ओवरहीटिंग और पोत की विफलता का कारण बनता है
  • अपर्याप्त निर्माण या रखरखाव के कारण बॉयलर की दबाव पोत विफलता।

डोबल बॉयलर

डोबल स्टीम कार एक बार-थ्रू टाइप कॉन्ट्रा-फ्लो जनरेटर का उपयोग करती है, जिसमें एक निरंतर ट्यूब होता है।यहाँ आग नीचे के बजाय कॉइल के ऊपर है।पानी को तल पर ट्यूब में पंप किया जाता है और भाप को शीर्ष पर खींचा जाता है।इसका मतलब यह है कि पानी और भाप के प्रत्येक कण को आवश्यक रूप से जनरेटर के प्रत्येक हिस्से से गुजरना चाहिए, जो एक तीव्र परिसंचरण का कारण बनता है जो किसी भी तलछट या हमले को ट्यूब के अंदर बनाने से रोकता है।पानी इस ट्यूब के निचले हिस्से में प्रवेश करता है 600 feet (183 m) किसी भी समय ट्यूब में दो क्वार्ट्स से कम पानी के साथ एक दूसरा।

जैसे ही गर्म गैसें कॉइल के बीच से गुजरती हैं, वे धीरे -धीरे ठंडा होते हैं, क्योंकि गर्मी पानी से अवशोषित हो रही है।जनरेटर का अंतिम भाग जिसके साथ गैसें संपर्क में आती हैं, ठंड आने वाले पानी में रहती है।

जब दबाव एक पूर्व-निर्धारित बिंदु पर पहुंचता है, तो आग को सकारात्मक रूप से काट दिया जाता है, आमतौर पर सेट किया जाता है 750 psi (5.2 MPa), ठंडे पानी का दबाव;एक सुरक्षा वाल्व पर सेट 1,200 lb (544 kg) अतिरिक्त सुरक्षा प्रदान करता है।आग स्वचालित रूप से तापमान के साथ -साथ दबाव से भी कट जाती है, इसलिए यदि बॉयलर पूरी तरह से सूखा था तो कॉइल को नुकसान पहुंचाना असंभव होगा क्योंकि आग तापमान से स्वचालित रूप से कट जाएगी।[7] इसी तरह के जबरन-संधि बॉयलर , जैसे कि प्रिचर्ड और लामोंट और वेलॉक्स बॉयलर एक ही फायदे प्रस्तुत करते हैं।

अनुप्रयोग

स्टीम बॉयलर का उपयोग किया जाता है जहां भाप और गर्म भाप की आवश्यकता होती है।इसलिए, स्टीम बॉयलर का उपयोग ऊर्जा व्यवसाय में बिजली का उत्पादन करने के लिए जनरेटर के रूप में किया जाता है।इसका उपयोग चावल मिल में भी पैरबिलिंग और सुखाने के लिए किया जाता है।उदाहरण के लिए हीटिंग सिस्टम में या सीमेंट उत्पादन के लिए उद्योग में कई अलग -अलग अनुप्रयोग क्षेत्रों के अलावा, स्टीम बॉयलर का उपयोग कृषि में और मिट्टी की भाप नसबंदी के लिए भी किया जाता है।[8]


परीक्षण

यूएसए में फायर किए गए स्टीम जनरेटर के परीक्षण के लिए प्रमुख कोड यांत्रिक इंजीनियरों का अमरीकी समुदाय (ASME) प्रदर्शन परीक्षण कोड, PTC 4. एक संबंधित घटक पुनर्योजी एयर हीटर है।एयर हीटर के लिए प्रदर्शन परीक्षण कोड के लिए एक प्रमुख संशोधन 2013 में प्रकाशित किया जाएगा। ड्राफ्ट की प्रतियां समीक्षा के लिए उपलब्ध हैं।[9][10] स्टीम बॉयलर की स्वीकृति परीक्षण के लिए यूरोपीय मानक एन 12952-15 हैं[11] और एन 12953-11।[12] ब्रिटिश मानक बीएस 845-1 और बीएस 845-2 भी यूके में उपयोग में हैं।[13][14]


यह भी देखें

संदर्भ

  1. Simmonds, Peter Lund. "सिममंड्स की औपनिवेशिक पत्रिका और विदेशी विविधता". Simmonds and Ward – via Google Books.
  2. TREDGOLD, Thomas (1 January 1827). स्टीम इंजन, जिसमें इसके आविष्कार और प्रगतिशील सुधार का एक खाता शामिल है;अपने सिद्धांतों की जांच के साथ ... नेविगेशन, खनन, आवेग मशीनों, और सी के लिए इसके आवेदन का भी विस्तार करना।... द्वारा सचित्र ... प्लेट, और ... लकड़ी की कटौती. J. Taylor. p. 42 – via Internet Archive. ब्लेकी बेलनाकार बॉयलर।
  3. Young, Robert: "Timothy Hackworth and the Locomotive"; the Book guild Ltd, Lewes, U.K. (2000) (reprint of 1923 ed.) p.326
  4. Bell, A.M. (1952) Locomotives p 46. Virtue and Company Ltd, London
  5. Mischissin, Stephen G. (7 February 2012). "रोचेस्टर विश्वविद्यालय - स्टीम टरबाइन निष्कर्षण लाइन विफलताओं की जांच" (PDF). Arlington, VA. pp. 25–26. Archived from the original (PDF) on 2015-09-23. Retrieved 23 February 2015.
  6. राल आयन एक्सचेंज या रिवर्स ऑस्मोसिस का चयन करने के लिए दिशानिर्देश फ़ीड वाटर डिमिनरलाइजेशन के लिए (PDF). Purolite International. November 2003. Retrieved 23 February 2015.
  7. Walton J.N. (1965-74) Doble Steam Cars, Buses, Lorries, and Railcars. "Light Steam Power" Isle of Man, UK
  8. "बॉयलर जल उपचार सेवाएं".
  9. PTC 4-2008
  10. PTC 4.3-1968
  11. BS EN 12952-15: "Water-tube boilers and auxiliary installations. Acceptance tests." (2003)
  12. BS EN 12953-11: "Shell boilers. Acceptance tests." (2003)
  13. BS 845-1: "Methods for assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids. Concise procedure" (1987)
  14. BS 845-2: "Methods for assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids. Comprehensive procedure. (1987)


इस पृष्ठ में गुम आंतरिक लिंक की सूची

  • उष्ण ऊर्जा
  • जीवाश्म ईंधन बिजली संयंत्र
  • उबलना
  • चम्मच से पानी पिलाना
  • वाष्पीकरण
  • पशु
  • ईंट का काम
  • लोहा
  • गर्मी का हस्तांतरण
  • कंवेक्शन
  • ऊष्मीय विकिरण
  • भाप के साथ कैरीओवर
  • जंग
  • मात्रात्मक प्रवाह दर
  • सुरक्षा कपाट
  • मिट्टी भाप नसबंदी

बाहरी संबंध