गैर-विमीयकरण
This article does not cite any sources. (November 2013) (Learn how and when to remove this template message) |
गैर-विमीयकरण चरों के उपयुक्त प्रतिस्थापन द्वारा भौतिक मात्रा से जुड़े गणितीय समीकरण से आयामी विश्लेषण का आंशिक या पूर्ण निष्कासन है। यह तकनीक उन पैरामीट्रिक समीकरण समस्याओं को सरल और आसान बना सकती है जहां माप न इकाइयां सम्मिलित हैं। यह आयामी विश्लेषण से निकटता से संबंधित है। कुछ भौतिक प्रणालियों में, स्केलिंग शब्द का प्रयोग 'अविआयामीकरण' के साथ एक दूसरे के रूप में किया जाता है, ताकि यह सुझाव दिया जा सके कि कुछ मात्राएँ कुछ उपयुक्त इकाई के सापेक्ष अपेक्षाकृत अधिक अच्छे से मापी जाती हैं। ये इकाइयाँ विक्षनरी मात्राओं को संदर्भित करती हैं: इकाइयों की अंतर्राष्ट्रीय प्रणाली जैसी इकाइयों के अतिरिक्त प्रणाली के लिए आंतरिक। गैर-विमीयकरण समीकरण में गहन और व्यापक गुण ों को गहन मात्रा में परिवर्तित करने के समान नहीं है, क्योंकि बाद की प्रक्रिया के परिणामस्वरूप वे चर होते हैं जो अभी भी इकाइयों को ले जाते हैं।
गैर-विमीयकरण एक प्रणाली के विशिष्ट गुणों को भी पुनर्प्राप्त कर सकता है। उदाहरण के लिए, यदि किसी प्रणाली में आंतरिक अनुनाद, लंबाई , या समय स्थिर है, तो गैर-विमीयकरण इन मानों को पुनर्प्राप्त कर सकता है। तकनीक विशेष रूप से उन प्रणालियों के लिए उपयोगी है जिन्हें अंतर समीकरण ों द्वारा वर्णित किया जा सकता है। नियंत्रण प्रणालियों के विश्लेषण में एक महत्वपूर्ण उपयोग है।
सबसे सरल विशेषता इकाइयों में से एक है घातीय वृद्धि का अनुभव करने वाली प्रणाली का दोहरीकरण समय, या इसके विपरीत घातीय क्षय का अनुभव करने वाली प्रणाली का आधा जीवन; विशेषता इकाइयों की एक अधिक प्राकृतिक जोड़ी औसत आयु/औसत जीवनकाल है, जो आधार 2 के अतिरिक्त आधार 'ई' के अनुरूप है।
गैर-विमीयकरण के कई उदाहरण उदाहरण अंतर समीकरणों को सरल बनाने से उत्पन्न होते हैं। ऐसा इसलिए है क्योंकि अंतर समीकरणों के संदर्भ में भौतिक समस्याओं का एक बड़ा समूह तैयार किया जा सकता है। निम्न पर विचार करें:
- डायनेमिक प्रणाली और डिफरेंशियल इक्वेशन विषयों की सूची
- आंशिक अंतर समीकरण विषयों की सूची
- गणितीय भौतिकी के विभेदक समीकरण
हालांकि इन समस्याओं के लिए गैर-विमीयकरण अच्छी तरह से अनुकूलित है, यह उन तक ही सीमित नहीं है। एक गैर-अंतर-समीकरण अनुप्रयोग का एक उदाहरण विमीय विश्लेषण है; एक अन्य उदाहरण आँकड़ों में सामान्यीकरण (सांख्यिकी) है।
मापने के उपकरण रोजमर्रा की जिंदगी में होने वाले गैर-विमीयकरण के व्यावहारिक उदाहरण हैं। मापने वाले उपकरणों को कुछ ज्ञात इकाई के सापेक्ष कैलिब्रेट किया जाता है। बाद के माप इस मानक के सापेक्ष किए जाते हैं। फिर, माप के पूर्ण मूल्य को मानक के संबंध में स्केल करके पुनर्प्राप्त किया जाता है।
औचित्य
मान लीजिए कि एक लंगर एक विशेष आवृत्ति T के साथ दोलन कर रहा है। ऐसी प्रणाली के लिए, T के सापेक्ष दोलन से संबंधित गणना करना लाभप्रद है। कुछ अर्थों में, यह अवधि के संबंध में माप को सामान्य कर रहा है।
एक प्रणाली की एक आंतरिक संपत्ति के सापेक्ष किए गए माप अन्य प्रणालियों पर लागू होंगे जिनके पास समान आंतरिक संपत्ति भी है। यह एक ही प्रणाली के विभिन्न कार्यान्वयनों की एक सामान्य संपत्ति की तुलना करने की भी स्वीकृति देता है। प्रणाली के आंतरिक गुणों के पूर्व ज्ञान पर भारी निर्भर किए बिना, गैर-विमीयकरण एक प्रणाली की 'विशेषता इकाइयों' का उपयोग करने के लिए एक व्यवस्थित तरीके से निर्धारित करता है। (किसी तंत्र की विशिष्ट इकाइयों को प्रकृति की प्राकृतिक इकाइयों के साथ भ्रमित नहीं करना चाहिए)। वास्तव में, गैर-विमीयकरण उन मापदंडों का सुझाव दे सकता है जिनका उपयोग किसी प्रणाली के विश्लेषण के लिए किया जाना चाहिए। हालांकि, एक समीकरण से शुरू करना जरूरी है जो प्रणाली का उपयुक्त वर्णन करता है।
नॉनडायमेंशनलाइजेशन स्टेप्स
समीकरणों की एक प्रणाली को गैर-विमीय बनाने के लिए, निम्न कार्य करना चाहिए:
- सभी स्वतंत्र और आश्रित चरों की पहचान करें;
- उनमें से प्रत्येक को निर्धारित की जाने वाली माप की एक विशिष्ट इकाई के सापेक्ष मापी गई मात्रा से बदलें;
- उच्चतम क्रम बहुपद या व्युत्पन्न शब्द के गुणांक द्वारा विभाजित करें;
- विवेकपूर्ण ढंग से प्रत्येक चर के लिए विशेषता इकाई की परिभाषा चुनें ताकि अधिक से अधिक पदों के गुणांक 1 हो जाएं;
- समीकरणों की प्रणाली को उनकी नई आयाम रहित मात्राओं के संदर्भ में पुनः लिखें।
अंतिम तीन चरण सामान्य रूप से उस समस्या के लिए विशिष्ट होते हैं जहां गैर-विमीयकरण लागू किया जाता है। हालाँकि, लगभग सभी प्रणालियों को निष्पादित करने के लिए पहले दो चरणों की आवश्यकता होती है।
कन्वेंशन
x और t को प्रतिस्थापित करने के लिए उपयोग किए जाने वाले चर नामों पर कोई प्रतिबंध नहीं है। हालांकि, उन्हें सामान्य रूप से चुना जाता है ताकि समस्या के लिए उपयोग करना सुविधाजनक और सहज हो। उदाहरण के लिए, यदि x द्रव्यमान का प्रतिनिधित्व करता है, तो आयाम रहित द्रव्यमान मात्रा का प्रतिनिधित्व करने के लिए अक्षर m एक उपयुक्त प्रतीक हो सकता है।
इस लेख में, निम्नलिखित सम्मेलनों का उपयोग किया गया है:
- t - स्वतंत्र चर का प्रतिनिधित्व करता है - सामान्य रूप से एक समय मात्रा। इसका अआयामी समकक्ष है .
- x - आश्रित चर का प्रतिनिधित्व करता है - द्रव्यमान, वोल्टेज या कोई मापने योग्य मात्रा हो सकती है। इसका अआयामी समकक्ष है .
मात्रा के चर नाम में जोड़ा गया एक सबस्क्रिप्टेड सी उस मात्रा को स्केल करने के लिए उपयोग की जाने वाली विशेषता इकाई को दर्शाने के लिए उपयोग किया जाता है। उदाहरण के लिए, यदि x एक मात्रा है, तो xcइसे स्केल करने के लिए उपयोग की जाने वाली विशेषता इकाई है।
एक उदाहरण के रूप में, स्थिर गुणांक वाले पहले क्रम के अंतर समीकरण पर विचार करें:
- इस समीकरण में स्वतंत्र चर यहाँ t है, और आश्रित चर x है।
- सेट . इसका परिणाम समीकरण में होता है
- उच्चतम आदेशित पद का गुणांक पहले व्युत्पन्न पद के सामने है। इससे भाग देने पर मिलता है
- सामने गुणांक केवल एक अभिलाक्षणिक चर t समाहित करता हैc, इसलिए इसे पहले एकता पर सेट करना चुनना सबसे आसान है: बाद में,
- इस स्थिति में अंतिम आयाम रहित समीकरण इकाइयों के साथ किसी भी पैरामीटर से पूरी तरह स्वतंत्र हो जाता है:
प्रतिस्थापन
सादगी के लिए मान लीजिए कि एक निश्चित प्रणाली को दो चरों की विशेषता है - एक आश्रित चर x और एक स्वतंत्र चर t, जहाँ x, t का एक फलन (गणित) है। दोनों एक्स और t इकाइयों के साथ मात्रा का प्रतिनिधित्व करते हैं। इन दो चरों को स्केल करने के लिए, मान लें कि माप xc की दो आंतरिक इकाइयाँ हैं और tc क्रमशः x और t जैसी ही इकाइयों के साथ, जैसे कि ये शर्तें हैं:
विभेदक संचालक
संबंध पर विचार करें
फोर्सिंग फलन
यदि किसी प्रणाली में एक फोर्सिंग फलन (डिफरेंशियल इक्वेशन) है तब
निरंतर गुणांक वाले रैखिक अंतर समीकरण
पहला आदेश प्रणाली
पहले आदेश प्रणाली के लिए अंतर समीकरण पर विचार करें:
दूसरा आदेश प्रणाली
एक दूसरे क्रम प्रणाली का रूप है
प्रतिस्थापन चरण
चर x और t को उनकी स्केल की गई मात्रा से परिवर्तित करे। समीकरण बन जाता है
चारित्रिक इकाइयों का निर्धारण
चर t पर विचार करेंc:
- यदि पहला आदेश अवधि सामान्यीकृत है।
- यदि शून्य क्रम अवधि सामान्यीकृत है।
दोनों प्रतिस्थापन मान्य हैं। हालांकि, शैक्षणिक कारणों के लिए, बाद के प्रतिस्थापन का उपयोग दूसरे ऑर्डर प्रणाली के लिए किया जाता है। इस प्रतिस्थापन को चुनने से x की स्वीकृति मिलती हैc फोर्सिंग फलन के गुणांक को सामान्य करके निर्धारित किया जाना:
उच्च क्रम प्रणाली
निरंतर गुणांक वाले सामान्य एन-वें क्रम रैखिक अंतर समीकरण का रूप है:
यदि अंतर समीकरण में केवल वास्तविक (जटिल नहीं) गुणांक होते हैं, तो ऐसी प्रणाली के गुण केवल पहले और दूसरे क्रम के प्रणाली के मिश्रण के रूप में व्यवहार करते हैं। ऐसा इसलिए है क्योंकि इसकी विशेषता बहुपद के एक समारोह की जड़ या तो वास्तविक संख्या या जटिल संयुग्म जोड़े हैं। इसलिए, यह समझना कि कैसे पहले और दूसरे आदेशित प्रणाली पर गैर-विमीयकरण लागू होता है, सुपरपोज़िशन सिद्धांत के माध्यम से उच्च ऑर्डर प्रणाली के गुणों को निर्धारित करने की स्वीकृति देता है।
एक प्रणाली के एक गैर-आयामी रूप में मुक्त मापदंडों की संख्या इसके क्रम के साथ बढ़ जाती है। इस कारण से, उच्च क्रम अंतर समीकरणों के लिए गैर-विमीयकरण का उपयोग संभव्यता ही कभी किया जाता है। प्रतीकात्मक संगणना के आगमन के साथ इस प्रक्रिया की आवश्यकता भी कम हो गई है।
विशेषता इकाइयों को पुनर्प्राप्त करने के उदाहरण
विभिन्न प्रकार की प्रणालियों को पहले या दूसरे क्रम के प्रणाली के रूप में अनुमानित किया जा सकता है। इनमें मैकेनिकल, इलेक्ट्रिकल, फ्लुइडिक, कैलोरी और टॉर्सनल प्रणाली सम्मिलित हैं। ऐसा इसलिए है क्योंकि इनमें से प्रत्येक उदाहरण में सम्मिलित मूलभूत भौतिक मात्राएँ पहले और दूसरे क्रम के डेरिवेटिव के माध्यम से संबंधित हैं।
यांत्रिक दोलन
मान लीजिए कि हमारे पास एक स्प्रिंग और एक डम्पर से जुड़ा द्रव्यमान है, जो बदले में एक दीवार से जुड़ा हुआ है, और एक ही रेखा के साथ द्रव्यमान पर कार्य करने वाला बल है।
परिभाषित करना
- = संतुलन से विस्थापन [एम]
- = समय [एस]
- = बाहरी बल या गड़बड़ी प्रणाली पर लागू [kg⋅m⋅s]−2]
- = गुटके का द्रव्यमान [किग्रा]
- = डैशपोट का अवमंदन स्थिरांक [kg⋅s−1]
- = स्प्रिंग का बल स्थिरांक [kg⋅s−2]
मान लीजिए कि लगाया गया बल एक साइनसॉइड है F = F0 cos(ωt)ब्लॉक की गति का वर्णन करने वाला अंतर समीकरण है
आंतरिक इकाई xc प्रति यूनिट बल पर ब्लॉक कितनी दूरी से चलता है, उससे अनुरूप है
विद्युत दोलन
प्रथम क्रम श्रृंखला आरसी परिपथ
बिजली की आपूर्ति से जुड़ी श्रृंखला आरसी परिपथ के लिए
द्वितीय क्रम श्रृंखला आरएलसी परिपथ
आर, सी, एल घटकों की एक श्रृंखला विन्यास के लिए जहां क्यू प्रणाली में आवेश है
क्वांटम यांत्रिकी
क्वांटम हार्मोनिक ऑसिलेटर
एक आयामी समय स्वतंत्र क्वांटम हार्मोनिक ऑसिलेटर के लिए श्रोडिंगर समीकरण है
सांख्यिकीय अनुरूप
मुख्य लेख: सामान्यीकरण (सांख्यिकी)
आँकड़ों में, अनुरूप प्रक्रिया सामान्य रूप से एक पैमाने कारक (सांख्यिकीय विस्तार का एक उपाय) द्वारा एक अंतर (एक दूरी) को विभाजित कर रही है, जो एक आयाम रहित संख्या उत्पन्न करती है, जिसे सामान्यीकरण कहा जाता है। प्रायः, यह मानक विचलन या नमूना मानक विचलन द्वारा क्रमशः त्रुटियों या अवशेष को विभाजित कर रहा है, मानक प्राप्तांक और छात्रकृत अवशेष प्राप्त कर रहा है।
यह सभी देखें
- बकिंघम π प्रमेय
- आयाम रहित संख्या
- प्राकृतिक इकाइयाँ
- सिस्टम समानता
- तार्किक समीकरण
- आरएलसी परिपथ
- आरएल परिपथ
- आरसी परिपथ