ब्राइन

From Vigyanwiki
Revision as of 16:55, 18 January 2023 by alpha>Sugatha (Sugatha moved page नमकीन to ब्राइन without leaving a redirect)

ब्राइनिंग पानी में नमक (आमतौर पर सोडियम क्लोराइड या कैल्शियम क्लोराइड ) का एक उच्च सांद्रता वाला घोल (रसायन) है। विविध संदर्भों में, "नमकीन" लगभग 3.5% (समुद्री जल की एक विशिष्ट सांद्रता, खाद्य पदार्थों को चमकाने के लिए उपयोग किए जाने वाले समाधानों के निचले सिरे पर) से लेकर लगभग 26% (एक विशिष्ट संतृप्त घोल ) तक के नमक के घोल को संदर्भित कर सकता है। , तापमान पर निर्भर करता है)। जमीन के खारे पानी के वाष्पीकरण के कारण स्वाभाविक रूप से ब्राइन बनता है लेकिन यह सोडियम क्लोराइड के खनन में भी उत्पन्न होता है।[1]ब्राइन का उपयोग खाद्य प्रसंस्करण और खाना पकाने (अचार और ब्राइनिंग), सड़कों और अन्य संरचनाओं को -टुकड़े और कई तकनीकी प्रक्रियाओं में किया जाता है। यह कई औद्योगिक प्रक्रियाओं का उप-उत्पाद भी है, जैसे अलवणीकरण , इसलिए इसे उचित निपटान या आगे के उपयोग (ताजे पानी की वसूली) के लिए अपशिष्ट जल उपचार की आवश्यकता होती है।[2]


प्रकृति में

एक नासा तकनीशियन सैन फ्रांसिस्को में नमक वाष्पीकरण तालाब में एक हाइड्रोमीटर का उपयोग करके ब्राइन के एकाग्रता स्तर को मापता है।

ब्रिन प्रकृति में कई तरीकों से निर्मित होते हैं। वाष्पीकरण के माध्यम से समुद्री जल के संशोधन के परिणामस्वरूप अवशिष्ट द्रव में लवण की सांद्रता होती है, एक विशिष्ट भूगर्भिक जमा जिसे evaporite कहा जाता है, विभिन्न भंग आयनों के रूप में खनिजों की संतृप्ति अवस्थाओं तक पहुँचते हैं, आमतौर पर जिप्सम और सेंधा नमक । इस तरह के नमक के जमाव को पानी में घोलने से भी नमकीन उत्पादन हो सकता है। जैसे-जैसे समुद्री जल जमता है, घुले हुए आयन विलयन में बने रहते हैं, जिसके परिणामस्वरूप क्रायोजेनिक ब्राइन नामक द्रव बनता है। निर्माण के समय, ये क्रायोजेनिक ब्राइन समुद्री जल के ठंडे तापमान की तुलना में परिभाषा के अनुसार ठंडे होते हैं और एक ब्रिनिकल नामक एक विशेषता का उत्पादन कर सकते हैं जहां ठंडी ब्राइन उतरती है, आसपास के समुद्री जल को ठंडा करती है।

खारे पानी के झरनों के रूप में सतह पर निकलने वाली नमकीन को चाट या लवण के रूप में जाना जाता है।[3] विशिष्ट घटकों (जैसे हैलाइट, anhydrite , कार्बोनेट ्स, जिप्सम, फ्लोराइड -लवण, कार्बनिक हलाइड्स और सल्फेट -लवण) दोनों के संदर्भ में भूजल में घुलित ठोस पदार्थों की सामग्री पृथ्वी पर एक स्थान से दूसरे स्थान पर अत्यधिक भिन्न होती है। . कुल घुलित ठोस (टीडीएस) के आधार पर भूजल के कई वर्गीकरणों में से एक का उपयोग करते हुए, ब्राइन वह पानी है जिसमें 100,000 मिलीग्राम/लीटर टीडीएस से अधिक होता है।[4] आमतौर पर अच्छी तरह से पूरा करने के संचालन के दौरान ब्राइन का उत्पादन होता है, खासकर एक कुएं के हाइड्रोलिक फ्रेक्चरिंग के बाद।

उपयोग करता है

पाक

खाद्य प्रसंस्करण और खाना पकाने में ब्राइन एक सामान्य एजेंट है। ब्राइनिंग का उपयोग खाद्य संरक्षण या भोजन को स्वादिष्ट बनाने के लिए किया जाता है। अचार बनाने के नाम से जानी जाने वाली प्रक्रिया में सब्जियों, पनीर और फल ों पर ब्राइनिंग लगाया जा सकता है। मांस और मछली आम तौर पर कम समय के लिए ब्राइन में डूबे रहते हैं, मरिनाशन के रूप में, इसकी मांस कोमलता और स्वाद बढ़ाने के लिए, या शेल्फ अवधि बढ़ाने के लिए।

क्लोरीन उत्पादन

एलिमेंटल क्लोरीन ब्राइन (NaCl सॉल्यूशन) के इलेक्ट्रोलीज़ द्वारा तैयार किया जा सकता है। यह प्रक्रिया सोडियम हाइड्रॉक्साइड (NaOH) और हाइड्रोजन गैस (H2). प्रतिक्रिया समीकरण इस प्रकार हैं:

  • कैथोड: 2 H+ + 2 e → H2
  • एनोड: 2 Cl → Cl2 ↑ + 2 e
  • समग्र प्रक्रिया: 2 NaCl + 2 H2O → Cl2 + H2 + 2 NaOH


रेफ्रिजरेटिंग तरल पदार्थ

तापीय ऊर्जा के परिवहन के लिए बड़े प्रशीतन प्रतिष्ठानों में ब्राइन का उपयोग द्वितीयक तरल पदार्थ के रूप में किया जाता है। सबसे अधिक इस्तेमाल की जाने वाली ब्राइन सस्ती कैल्शियम क्लोराइड और सोडियम क्लोराइड पर आधारित होती है।[5] इसका उपयोग इसलिए किया जाता है क्योंकि पानी में नमक मिलाने से घोल का हिमीकरण तापमान कम हो जाता है और सामग्री की तुलनात्मक रूप से कम लागत के लिए ऊष्मा परिवहन दक्षता को बहुत बढ़ाया जा सकता है। NaCl ब्राइन के लिए प्राप्य न्यूनतम हिमांक है −21.1 °C (−6.0 °F) वजन के हिसाब से 23.3% NaCl की सांद्रता पर।[5]इसे गलनक्रांतिक पॉइंट कहा जाता है।

उनके संक्षारक गुणों के कारण नमक-आधारित ब्राइन को इथाइलीन ग्लाइकॉल जैसे कार्बनिक तरल पदार्थों से बदल दिया गया है।[6] मछली पकड़ने के कुछ जहाजों पर सोडियम क्लोराइड ब्राइन स्प्रे का इस्तेमाल मछलियों को जमने के लिए किया जाता है।[7] नमकीन तापमान आम तौर पर होता है −5 °F (−21 °C). एयर ब्लास्ट फ्रीजिंग तापमान हैं −31 °F (−35 °C) या कम। ब्राइन के उच्च तापमान को देखते हुए, एयर ब्लास्ट फ्रीजिंग पर सिस्टम दक्षता अधिक हो सकती है। उच्च-मूल्य वाली मछली आमतौर पर नमकीन के लिए व्यावहारिक तापमान सीमा से नीचे, बहुत कम तापमान पर जमी होती है।

जल मृदुकरण और शुद्धिकरण

आयन विनिमय तकनीक से युक्त जल मृदुकरण और जल शोधन प्रणालियों में ब्राइन एक सहायक एजेंट है। सबसे आम उदाहरण घरेलू डिशवॉशर हैं, जो डिशवॉशर नमक के रूप में सोडियम क्लोराइड का उपयोग करते हैं। नमकीन शुद्धिकरण प्रक्रिया में ही शामिल नहीं है, लेकिन चक्रीय आधार पर आयन-विनिमय राल के पुनर्जनन के लिए उपयोग किया जाता है। उपचारित किया जा रहा पानी राल कंटेनर के माध्यम से बहता है जब तक कि राल समाप्त नहीं हो जाता है और पानी को वांछित स्तर तक शुद्ध किया जाता है। इसके बाद संचित ठोस पदार्थों को हटाने के लिए राल बिस्तर को क्रमिक रूप से बैकवॉश करके राल को पुनर्जीवित किया जाता है, प्रतिस्थापन आयनों के एक केंद्रित समाधान के साथ राल से हटाए गए आयनों को फ्लश किया जाता है, और राल से फ्लशिंग समाधान को धोया जाता है।[8] उपचार के बाद, उपचारित पानी से कैल्शियम और मैग्नीशियम आयनों से संतृप्त आयन-एक्सचेंज राल मोती, 6-12% NaCl युक्त ब्राइन में भिगोने से पुनर्जीवित होते हैं। ब्राइन से सोडियम आयन मोतियों पर कैल्शियम और मैग्नीशियम आयनों को प्रतिस्थापित करते हैं।[9][10]


डी-आइसिंग

कम तापमान में, नमकीन घोल का उपयोग डी-आइसिंग|डी-आइस या सड़कों पर जमने वाले तापमान को कम करने के लिए किया जा सकता है।[11]


अपशिष्ट जल

ब्राइन कई औद्योगिक प्रक्रियाओं का उपोत्पाद है, जैसे अलवणीकरण, पावर प्लांट शीतलन टॉवर , तेल और प्राकृतिक गैस निष्कर्षण से उत्पादित पानी , एसिड माइन ड्रेनेज , विपरीत परासरण रिजेक्ट, क्लोराल्कली प्रक्रिया | क्लोर-क्षार अपशिष्ट जल उपचार, लुगदी और पेपर मिल प्रवाह, और खाद्य और पेय प्रसंस्करण से निकलने वाली अपशिष्ट धाराएँ। तनुकृत लवणों के साथ, इसमें प्रीट्रीटमेंट और सफाई रसायनों के अवशेष, उनकी प्रतिक्रिया उपोत्पाद और जंग के कारण भारी धातुएं हो सकती हैं।

अपशिष्ट जल नमकीन एक महत्वपूर्ण पर्यावरणीय खतरा पैदा कर सकता है, दोनों लवणों के संक्षारक और तलछट बनाने वाले प्रभावों और इसमें पतला अन्य रसायनों की विषाक्तता के कारण।[12] अलवणीकरण संयंत्रों और कूलिंग टावरों से अप्रदूषित ब्राइन को समुद्र में लौटाया जा सकता है। पर्यावरणीय प्रभाव को सीमित करने के लिए, इसे पानी की एक और धारा से पतला किया जा सकता है, जैसे सीवेज उपचार या बिजली संयंत्र का बहिर्गमन। चूंकि नमकीन समुद्र के पानी से भारी है और समुद्र के तल पर जमा हो जाएगा, इसलिए उचित प्रसार सुनिश्चित करने के लिए तरीकों की आवश्यकता होती है, जैसे मल में पानी के नीचे विसारक (सीवेज) स्थापित करना।[13] अन्य तरीकों में वाष्पीकरण तालाब ों में सुखाने, गहरे कुओं में इंजेक्शन लगाने, और सिंचाई, डी-आइसिंग या धूल नियंत्रण उद्देश्यों के लिए ब्राइन का भंडारण और पुन: उपयोग करना शामिल है।[12]

प्रदूषित ब्राइन के उपचार के लिए तकनीकों में शामिल हैं: झिल्ली निस्पंदन प्रक्रियाएं, जैसे कि रिवर्स ऑस्मोसिस और फॉरवर्ड ऑस्मोसिस ; आयन एक्सचेंज प्रक्रियाएं जैसे इलेक्ट्रोडायलिसिस या आयन-एक्सचेंज राल; या वाष्पीकरण प्रक्रियाएं, जैसे कि थर्मल ब्राइन कंसंट्रेटर्स और क्रिस्टलीकरण # बाष्पीकरणीय क्रिस्टलाइज़र यांत्रिक वाष्प पुनर्संपीड़न और भाप को नियोजित करते हैं। ओस्मोटिकली असिस्टेड रिवर्स ऑस्मोसिस और संबंधित प्रक्रियाओं को नियोजित करने वाली मेम्ब्रेन ब्राइन कंसंट्रेशन के लिए नई विधियाँ जीरो लिक्विड डिस्चार्ज सिस्टम (ZLD) के हिस्से के रूप में जमीन हासिल करने लगी हैं।[14]


रचना और शुद्धि

ब्राइन में Na का सान्द्र विलयन होता है+ और Cl- आयन। सोडियम क्लोराइड पानी में मौजूद नहीं है: यह पूरी तरह से आयनित है। विभिन्न ब्राइनों में पाए जाने वाले अन्य धनायनों में शामिल हैं K+, एमजी2+, सीए2+, और सीनियर2+. बाद के तीन समस्याग्रस्त हैं क्योंकि वे पैमाने बनाते हैं और वे साबुन के साथ प्रतिक्रिया करते हैं। क्लोराइड के अलावा, ब्रिन में कभी-कभी ब्र भी होता है और आई और, सबसे अधिक समस्यात्मक रूप से, SO2−
4
. शुद्धिकरण के चरणों में अक्सर जिप्सम (CaSO4) के साथ मिलकर ठोस मैग्नीशियम हाइड्रॉक्साइड को अवक्षेपित करने के लिए कैल्शियम ऑक्साइड को जोड़ना शामिल होता है।4), जिसे छानकर हटाया जा सकता है। आगे की शुद्धि भिन्नात्मक क्रिस्टलीकरण (रसायन विज्ञान) द्वारा प्राप्त की जाती है। परिणामी शुद्ध नमक को वाष्पित नमक या वैक्यूम नमक कहा जाता है।[1]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Westphal, Gisbert; Kristen, Gerhard; Wegener, Wilhelm; Ambatiello, Peter; Geyer, Helmut; Epron, Bernard; Bonal, Christian; Steinhauser, Georg; Götzfried (2010). "Sodium Chloride". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_317.pub4.
  2. Panagopoulos, Argyris; Haralambous, Katherine-Joanne; Loizidou, Maria (November 2019). "Desalination brine disposal methods and treatment technologies – A review". Science of the Total Environment. 693: 133545. Bibcode:2019ScTEn.693m3545P. doi:10.1016/j.scitotenv.2019.07.351. PMID 31374511. S2CID 199387639.
  3. "The Scioto Saline-Ohio's Early Salt Industry" (PDF). dnr.state.oh.us. Archived from the original (PDF) on 2012-10-07.
  4. "Global Overview of Saline Groundwater Occurrence and Genesis". igrac.net. Archived from the original on 2011-07-23. Retrieved 2017-07-17.
  5. 5.0 5.1 "Secondary Refrigerant Systems". Cool-Info.com. Retrieved 17 July 2017.
  6. "Calcium Chloride versus Glycol". accent-refrigeration.com. Retrieved 17 July 2017.
  7. Kolbe, Edward; Kramer, Donald (2007). Planning forSeafood Freezing (PDF). ISBN 978-1566121194. Archived from the original (PDF) on 12 July 2017. Retrieved 17 July 2017. {{cite book}}: |work= ignored (help)
  8. Kemmer, Frank N., ed. (1979). The NALCO Water Handbook. McGraw-Hill. pp. 12–7, 12–25.
  9. "Hard and soft water". GCSE Bitesize. BBC.
  10. Arup K. SenGupta (19 April 2016). Ion Exchange and Solvent Extraction: A Series of Advances. CRC Press. pp. 125–. ISBN 978-1-4398-5540-9.
  11. "Prewetting with Salt Brine for More Effective Roadway Deicing". www.usroads.com. Archived from the original on 2015-01-07. Retrieved 2012-01-14.
  12. 12.0 12.1 "7 Ways to Dispose of Brine Waste". Desalitech. Retrieved 18 July 2017.
  13. "Reverse Osmosis Desalination: Brine disposal". Lenntech. Retrieved 18 July 2017.
  14. "Novel Technology for Concentration of Brine Using Membrane-Based System" (PDF). Water Today. Retrieved 31 August 2019.