अनुकोण प्रतिचित्रण

From Vigyanwiki
एक आयताकार ग्रिड (शीर्ष) और इसकी छवि एक अनुरूप मानचित्र के तहत (तल)। ऐसा देखा गया है 90° पर प्रतिच्छेद करने वाली रेखाओं के युग्मों को 90° पर अभी भी प्रतिच्छेद करने वाले वक्रों के युग्मों को मैप करता है।

गणित में, एक अनुरूप नक्शा एक फ़ंक्शन (गणित) है जो स्थानीय रूप से कोण ों को संरक्षित करता है, लेकिन जरूरी नहीं कि लंबाई।

अधिक औपचारिक रूप से, चलो और के खुले उपसमुच्चय बनें . एक समारोह एक बिंदु पर अनुरूप (या कोण-संरक्षण) कहा जाता है अगर यह निर्देशित वक्र ों के बीच कोणों को संरक्षित करता है , साथ ही अभिविन्यास को संरक्षित करना। अनुरूप मानचित्र दोनों कोणों और असीम रूप से छोटे आंकड़ों के आकार को संरक्षित करते हैं, लेकिन जरूरी नहीं कि उनका आकार या वक्रता हो।

एक समन्वय परिवर्तन के जैकोबियन मैट्रिक्स और निर्धारक व्युत्पन्न मैट्रिक्स के संदर्भ में अनुरूप संपत्ति का वर्णन किया जा सकता है। परिवर्तन अनुरूप है जब भी प्रत्येक बिंदु पर जैकोबियन एक सकारात्मक स्केलर बार एक रोटेशन मैट्रिक्स (निर्धारक एक के साथ ऑर्थोगोनल मैट्रिक्स ) होता है। कुछ लेखक अभिविन्यास-रिवर्सिंग मैपिंग को शामिल करने के लिए अनुरूपता को परिभाषित करते हैं जिनके जैकबियन किसी भी स्केलर समय के रूप में किसी ऑर्थोगोनल मैट्रिक्स के रूप में लिखे जा सकते हैं।[1] दो आयामों में मैपिंग के लिए, (अभिविन्यास-संरक्षण) अनुरूप मैपिंग सटीक रूप से स्थानीय रूप से उलटा होलोमॉर्फिक फ़ंक्शन फ़ंक्शन हैं। तीन और उच्च आयामों में, लिउविल का प्रमेय (अनुरूप मैपिंग) | लिउविल का प्रमेय कुछ प्रकार के अनुरूप मैपिंग को तेजी से सीमित करता है।

अनुरूपता की धारणा सामान्य रूप से रीमैनियन कई गुना या सेमी-रीमैनियन मैनिफोल्ड के बीच मानचित्रों के लिए सामान्य है।

दो आयामों में अनुरूप मानचित्र

यदि जटिल तल का खुला समुच्चय है , फिर एक समारोह (गणित) अनुरूप है अगर और केवल अगर यह होलोमोर्फिक फ़ंक्शन है और इसका व्युत्पन्न हर जगह गैर-शून्य है . यदि एंटीहोलोमॉर्फिक फ़ंक्शन (होलोमोर्फिक फ़ंक्शन के लिए जटिल संयुग्म) है, यह कोणों को संरक्षित करता है लेकिन उनके अभिविन्यास को उलट देता है।

साहित्य में, अनुरूपता की एक और परिभाषा है: मानचित्रण जो समतल में एक खुले सेट पर एक-से-एक और होलोमोर्फिक है। ओपन मैपिंग प्रमेय उलटा फ़ंक्शन (की छवि पर परिभाषित) को बाध्य करता है ) होलोमोर्फिक होना। इस प्रकार, इस परिभाषा के तहत, एक नक्शा अनुरूप है अगर और केवल अगर यह बायोलोमोर्फिक है। अनुरूप मानचित्रों के लिए दो परिभाषाएँ समतुल्य नहीं हैं। एक-से-एक और होलोमोर्फिक होने का अर्थ है गैर-शून्य व्युत्पन्न होना। हालांकि, घातीय कार्य एक गैर-अक्षीय व्युत्पन्न के साथ एक होलोमोर्फिक फ़ंक्शन है, लेकिन यह आवधिक होने के बाद से एक-से-एक नहीं है।[2] रीमैन मैपिंग प्रमेय , जटिल विश्लेषण के गहन परिणामों में से एक है, जिसमें कहा गया है कि कोई भी गैर-खाली खुला केवल उचित उपसमुच्चय से जुड़ा है ओपन यूनिट डिस्क में एक द्विभाजन कंफर्मल मैप को स्वीकार करता है .

=== रीमैन क्षेत्र === पर वैश्विक अनुरूप मानचित्र

रीमैन स्फीयर के अनुमान का एक नक्शा स्वयं अनुरूप है अगर और केवल अगर यह एक मोबियस परिवर्तन है।

मोबियस परिवर्तन का जटिल संयुग्म कोणों को संरक्षित करता है, लेकिन अभिविन्यास को उलट देता है। उदाहरण के लिए, उलटा ज्यामिति#वृत्त उलटा।

तीन प्रकार के कोणों के संबंध में अनुरूपता

समतल ज्यामिति में तीन प्रकार के कोण होते हैं जिन्हें अनुरूप मानचित्र में संरक्षित किया जा सकता है।[3] प्रत्येक को अपने स्वयं के वास्तविक बीजगणित, साधारण सम्मिश्र संख्याओं, विभाजित-जटिल संख्या ओं और दोहरी संख्या ओं द्वारा होस्ट किया जाता है। अनुरूप मानचित्रों को प्रत्येक मामले में रैखिक आंशिक परिवर्तन # अनुरूप संपत्ति द्वारा वर्णित किया गया है।[4]


तीन या अधिक आयामों में अनुरूप मानचित्र

रिमानियन ज्यामिति

रीमैनियन ज्यामिति में, दो रिमेंनियन मीट्रिक और एक चिकने मैनिफोल्ड पर अनुरूप रूप से समकक्ष कहा जाता है यदि किसी सकारात्मक कार्य के लिए पर . कार्यक्रम अनुरूप कारक कहा जाता है।

दो रिमेंनियन मैनिफोल्ड्स के बीच एक भिन्नता को एक अनुरूप मानचित्र कहा जाता है यदि खींची गई मीट्रिक मूल रूप से अनुरूप रूप से समतुल्य है। उदाहरण के लिए, समतल (गणित) पर एक गोले का त्रिविम प्रक्षेपण अनंत पर एक बिंदु के साथ संवर्धित एक अनुरूप मानचित्र है।

अनुरूप रूप से समकक्ष रीमैनियन मेट्रिक्स के एक वर्ग के रूप में, एक चिकनी कई गुना पर एक अनुरूप संरचना को भी परिभाषित किया जा सकता है।

यूक्लिडियन अंतरिक्ष

जोसेफ लिउविल की एक लिउविल की प्रमेय (अनुरूप मैपिंग) दर्शाती है कि दो आयामों की तुलना में उच्च आयामों में बहुत कम अनुरूप मानचित्र हैं। यूक्लिडियन अंतरिक्ष के एक खुले उपसमुच्चय से आयाम तीन या अधिक के एक ही यूक्लिडियन अंतरिक्ष में किसी भी अनुरूप मानचित्र को तीन प्रकार के परिवर्तनों से बनाया जा सकता है: एक होमोथेटिक परिवर्तन, एक आइसोमेट्री , और एक विशेष अनुरूप परिवर्तन

अनुप्रयोग

नक्शानवीसी

नक्शानवीसी में, मर्केटर प्रोजेक्शन और स्टीरियोग्राफिक प्रोजेक्शन सहित कई नामित नक्शा प्रक्षेपण अनुरूप हैं। वे सीधे खंड के रूप में निरंतर असर के किसी भी पाठ्यक्रम का प्रतिनिधित्व करने की अपनी अनूठी संपत्ति के कारण समुद्री नेविगेशन में उपयोग के लिए विशेष रूप से उपयोगी हैं। इस तरह के एक कोर्स, जिसे रूंब (या, गणितीय रूप से, एक लॉक्सोड्रोम) के रूप में जाना जाता है, समुद्री नेविगेशन में पसंद किया जाता है क्योंकि जहाज एक निरंतर कम्पास दिशा में जा सकते हैं।

भौतिकी और इंजीनियरिंग

इंजीनियरिंग और भौतिकी में समस्याओं को हल करने के लिए अनुरूप मानचित्रण अमूल्य हैं, जिन्हें एक जटिल चर के कार्यों के संदर्भ में व्यक्त किया जा सकता है, फिर भी असुविधाजनक ज्यामिति प्रदर्शित करता है। एक उपयुक्त मानचित्रण चुनकर, विश्लेषक असुविधाजनक ज्यामिति को और अधिक सुविधाजनक में बदल सकता है। उदाहरण के लिए, कोई विद्युत क्षेत्र की गणना करना चाह सकता है, , एक निश्चित कोण (जहाँ 2-स्पेस में एक बिंदु का जटिल समन्वय है)। बंद रूप में हल करने के लिए यह समस्या अपने आप में काफी अनाड़ी है। हालाँकि, एक बहुत ही सरल अनुरूप मानचित्रण को नियोजित करके, असुविधाजनक कोण को सटीक रूप से मैप किया जाता है रेडियन, जिसका अर्थ है कि दो विमानों का कोना एक सीधी रेखा में बदल जाता है। इस नए डोमेन में, समस्या (संवाहक दीवार के पास स्थित बिंदु आवेश से प्रभावित विद्युत क्षेत्र की गणना करने की) को हल करना काफी आसान है। इस डोमेन में समाधान प्राप्त होता है, , और फिर उसे नोट करके मूल डोमेन पर वापस मैप किया गया एक फ़ंक्शन के रूप में प्राप्त किया गया था (अर्थात, की फ़ंक्शन रचना और ) का , कहाँ से रूप में देखा जा सकता है , जिसका एक कार्य है , मूल समन्वय आधार। ध्यान दें कि यह एप्लिकेशन इस तथ्य का विरोधाभास नहीं है कि अनुरूप मानचित्रण कोणों को संरक्षित करते हैं, वे ऐसा केवल अपने डोमेन के आंतरिक बिंदुओं के लिए करते हैं, न कि सीमा पर। एक अन्य उदाहरण टैंकों में सुस्त गतिकी की सीमा मान समस्या को हल करने के लिए अनुरूप मानचित्रण तकनीक का अनुप्रयोग है।[5] यदि कोई फ़ंक्शन हार्मोनिक फ़ंक्शन है (अर्थात, यह लाप्लास के समीकरण को संतुष्ट करता है ) एक समतल डोमेन (जो द्वि-आयामी है) पर है, और एक अनुरूप मानचित्र के माध्यम से दूसरे समतल डोमेन में रूपांतरित होता है, परिवर्तन भी हार्मोनिक है। इस कारण से, कोई भी कार्य जो एक संभावित द्वारा परिभाषित किया गया है, एक अनुरूप मानचित्र द्वारा रूपांतरित किया जा सकता है और फिर भी एक संभावित द्वारा शासित रहता है। एक संभावित द्वारा परिभाषित समीकरणों के भौतिकी के उदाहरणों में विद्युत चुम्बकीय क्षेत्र, गुरुत्वाकर्षण क्षेत्र , और द्रव गतिकी में संभावित प्रवाह शामिल हैं, जो कि निरंतर घनत्व , शून्य चिपचिपाहट और इर्रोटेशनल वेक्टर क्षेत्र मानते हुए द्रव प्रवाह का एक अनुमान है। अनुरूप मानचित्र के द्रव गतिशील अनुप्रयोग का एक उदाहरण जौकोव्स्की रूपांतरण है जिसका उपयोग जौकोव्स्की एयरफ़ोइल के चारों ओर प्रवाह के क्षेत्र की जांच के लिए किया जा सकता है।

कुछ विशिष्ट ज्यामिति में अरैखिक आंशिक अंतर समीकरणों को हल करने में अनुरूप मानचित्र भी मूल्यवान हैं। इस तरह के विश्लेषणात्मक समाधान गवर्निंग समीकरण के संख्यात्मक सिमुलेशन की सटीकता पर उपयोगी जांच प्रदान करते हैं। उदाहरण के लिए, अर्ध-अनंत दीवार के चारों ओर बहुत चिपचिपा मुक्त-सतह प्रवाह के मामले में, डोमेन को आधे-प्लेन में मैप किया जा सकता है जिसमें समाधान एक-आयामी और गणना करने के लिए सीधा है।[6] असतत प्रणालियों के लिए, नॉरी और यांग ने ज्यामिति (उर्फ उलटा ज्यामिति ) में एक अच्छी तरह से ज्ञात अनुरूप मानचित्रण के माध्यम से असतत सिस्टम रूट लोकस को निरंतर रूट लोकस में परिवर्तित करने का एक तरीका प्रस्तुत किया।[7]


मैक्सवेल के समीकरण

मैक्सवेल के समीकरण लोरेंत्ज़ परिवर्तन ों द्वारा संरक्षित हैं जो एक समूह बनाते हैं जिसमें परिपत्र और अतिशयोक्तिपूर्ण घुमाव शामिल हैं। उत्तरार्द्ध को कभी-कभी लोरेंत्ज़ बूस्ट कहा जाता है ताकि उन्हें परिपत्र घुमावों से अलग किया जा सके। ये सभी परिवर्तन अनुरूप हैं क्योंकि अतिशयोक्तिपूर्ण घुमाव अतिशयोक्तिपूर्ण कोण (तेज़ी कहा जाता है) को संरक्षित करते हैं और अन्य घुमाव कोण को संरक्षित करते हैं। पोइनकेयर समूह में अनुवाद की शुरूआत फिर से कोणों को संरक्षित करती है।

एबेनेज़र कनिंघम (1908) और हैरी बेटमैन (1910) द्वारा मैक्सवेल के समीकरणों के संबंधित समाधानों के अनुरूप मानचित्रों के एक बड़े समूह की पहचान की गई थी। कैंब्रिज विश्वविद्यालय में उनके प्रशिक्षण ने उन्हें छवि आवेशों की विधि और गोले और व्युत्क्रमण के लिए छवियों के संबंधित तरीकों के साथ सुविधा प्रदान की थी। जैसा कि एंड्रयू वारविक (2003) मास्टर्स ऑफ थ्योरी द्वारा बताया गया है: [8]

प्रत्येक चार-आयामी समाधान को छद्म-त्रिज्या के चार-आयामी हाइपर-क्षेत्र में उलटा किया जा सकता है एक नया समाधान तैयार करने के लिए।

वारविक ने सापेक्षता के इस नए प्रमेय को आइंस्टीन की कैम्ब्रिज प्रतिक्रिया के रूप में उजागर किया है, और जैसा कि उलटा करने की विधि का उपयोग करके अभ्यास पर स्थापित किया गया है, जैसे कि जेम्स हॉपवुड जीन्स की पाठ्यपुस्तक गणितीय सिद्धांत विद्युत और चुंबकत्व में पाया गया।

सामान्य सापेक्षता

सामान्य सापेक्षता में, अनुरूप मानचित्र सबसे सरल और इस प्रकार सबसे सामान्य प्रकार के कारण परिवर्तन हैं। शारीरिक रूप से, ये अलग-अलग ब्रह्मांडों का वर्णन करते हैं जिसमें सभी समान घटनाएं और इंटरैक्शन अभी भी (कारण) संभव हैं, लेकिन इसे प्रभावित करने के लिए एक नया अतिरिक्त बल आवश्यक है (अर्थात, सभी समान प्रक्षेपवक्रों की प्रतिकृति के लिए geodesic गति से प्रस्थान की आवश्यकता होगी क्योंकि मीट्रिक टेंसर (सामान्य सापेक्षता) अलग है)। इसका उपयोग अक्सर मॉडल को गुरुत्वीय विलक्षणता से परे विस्तार के लिए उत्तरदायी बनाने की कोशिश करने के लिए किया जाता है, उदाहरण के लिए महा विस्फोट से पहले भी ब्रह्मांड के विवरण की अनुमति देना।

यह भी देखें

  • बिहोलोमोर्फिक नक्शा
  • कैराथियोडोरी का प्रमेय (अनुरूप मानचित्रण) | कैराथियोडोरी का प्रमेय - एक अनुरूप नक्शा सीमा तक लगातार फैलता है
  • पेनरोज़ आरेख
  • श्वार्ज़-क्रिस्टोफ़ेल मानचित्रण - एक साधारण बहुभुज के आंतरिक भाग में ऊपरी अर्ध-तल का एक अनुरूप परिवर्तन
  • विशेष रेखीय समूह - परिवर्तन जो आयतन (कोणों के विपरीत) और अभिविन्यास को संरक्षित करते हैं

संदर्भ

  1. Blair, David (2000-08-17). उलटा सिद्धांत और अनुरूप मानचित्रण. The Student Mathematical Library. Vol. 9. Providence, Rhode Island: American Mathematical Society. doi:10.1090/stml/009. ISBN 978-0-8218-2636-2. S2CID 118752074.
  2. Richard M. Timoney (2004), Riemann mapping theorem from Trinity College Dublin
  3. Geometry/Unified Angles at Wikibooks
  4. Tsurusaburo Takasu (1941) Gemeinsame Behandlungsweise der elliptischen konformen, hyperbolischen konformen und parabolischen konformen Differentialgeometrie, 2, Proceedings of the Imperial Academy 17(8): 330–8, link from Project Euclid, MR14282
  5. Kolaei, Amir; Rakheja, Subhash; Richard, Marc J. (2014-01-06). "टैंक वाहनों के क्षणिक पार्श्व स्लोश और रोल स्थिरता की भविष्यवाणी के लिए रैखिक द्रव स्लॉश सिद्धांत की प्रयोज्यता की सीमा". Journal of Sound and Vibration. 333 (1): 263–282. Bibcode:2014JSV...333..263K. doi:10.1016/j.jsv.2013.09.002.
  6. Hinton, Edward; Hogg, Andrew; Huppert, Herbert (2020). "उथला मुक्त-सतह स्टोक्स एक कोने के आसपास बहता है". Philosophical Transactions of the Royal Society A. 378 (2174). Bibcode:2020RSPTA.37890515H. doi:10.1098/rsta.2019.0515. PMC 7287310. PMID 32507085.
  7. Noury, Keyvan; Yang, Bingen (2020). "A Pseudo S-plane Mapping of Z-plane Root Locus". ASME 2020 इंटरनेशनल मैकेनिकल इंजीनियरिंग कांग्रेस और प्रदर्शनी. American Society of Mechanical Engineers. doi:10.1115/IMECE2020-23096. ISBN 978-0-7918-8454-6. S2CID 234582511.
  8. Warwick, Andrew (2003). सिद्धांत के परास्नातक: कैम्ब्रिज और गणितीय भौतिकी का उदय. University of Chicago Press. pp. 404–424. ISBN 978-0226873756.


आगे की पढाई


बाहरी कड़ियाँ

श्रेणी: रीमानियन ज्यामिति श्रेणी:नक्शा अनुमान श्रेणी:कोण