घूर्णी व्युत्क्रमण

From Vigyanwiki
Revision as of 16:00, 23 January 2023 by alpha>Indicwiki (Created page with "गणित में, एक आंतरिक उत्पाद स्थान पर परिभाषित एक फ़ंक्शन (गणित)...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक आंतरिक उत्पाद स्थान पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी आक्रमण के लिए कहा जाता है यदि इसका मूल्य तब नहीं बदलता है जब उसके तर्क पर मनमाना घुमाव लागू होते हैं।

गणित

कार्य

उदाहरण के लिए, फ़ंक्शन

मूल के चारों ओर विमान के घुमाव के तहत अपरिवर्तनीय है, क्योंकि किसी भी कोण के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए θ

फ़ंक्शन, शर्तों के कुछ रद्द करने के बाद, बिल्कुल एक ही रूप लेता है

रोटेशन मैट्रिक्स का उपयोग करके मैट्रिक्स (गणित) फॉर्म का उपयोग करके निर्देशांक के रोटेशन को व्यक्त किया जा सकता है,

या प्रतीकात्मक रूप से x & prime;= आरएक्स।प्रतीकात्मक रूप से, दो वास्तविक चर के वास्तविक-मूल्यवान कार्य का रोटेशन आक्रमण है

शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं।कई वास्तविक चर के एक समारोह के लिए | तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान कार्य, यह अभिव्यक्ति उपयुक्त रोटेशन मैट्रिसेस का उपयोग करके आसानी से फैली हुई है।

अवधारणा एक या एक से अधिक चर के वेक्टर-मूल्यवान फ़ंक्शन f तक भी फैली हुई है;

उपरोक्त सभी मामलों में, तर्क (यहां समन्वय के लिए निर्देशांक कहा जाता है) को घुमाया जाता है, न कि फ़ंक्शन को ही।

ऑपरेटर

एक समारोह के लिए (गणित)

जो तत्वों को वास्तविक लाइन के एक सबसेट एक्स से अपने आप में मैप करता है, 'घूर्णी आक्रमण' का मतलब यह भी हो सकता है कि एक्स में तत्वों के घुमाव के साथ फ़ंक्शन कम्यूटेटिव ऑपरेशन । यह एक ऑपरेटर (गणित) के लिए भी लागू होता है जो इस तरह के कार्यों पर कार्य करता है।एक उदाहरण दो-आयामी लाप्लास ऑपरेटर है

जो किसी अन्य फ़ंक्शन को प्राप्त करने के लिए एक फ़ंक्शन f पर कार्य करता है2 f।यह ऑपरेटर घुमाव के तहत अपरिवर्तनीय है।

यदि g फ़ंक्शन g (p) = f (r (p)) है, जहाँ r कोई रोटेशन है, तो2 </d> g) (p) = (∇ ∇2 f) (r (p));अर्थात्, एक फ़ंक्शन को घुमाना केवल उसके लाप्लासियन को घुमाता है।


भौतिकी

भौतिकी में, यदि कोई प्रणाली इस बात की परवाह किए बिना कि यह अंतरिक्ष में कैसे उन्मुख है, तो इसका व्यवहार करता है, तो इसका लैग्रैन्जियन यांत्रिकी घूर्णी रूप से अपरिवर्तनीय है।नूथर के प्रमेय के अनुसार, यदि एक भौतिक प्रणाली की कार्रवाई (भौतिकी) (इसके लैग्रैन्जियन के समय के साथ अभिन्न) रोटेशन के तहत अपरिवर्तनीय है, तो कोणीय गति का संरक्षण

क्वांटम यांत्रिकी के लिए आवेदन

क्वांटम यांत्रिकी में, घूर्णी आक्रमण वह संपत्ति है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है।वह है

किसी भी रोटेशन के लिए आर। चूंकि रोटेशन समय पर स्पष्ट रूप से निर्भर नहीं करता है, यह ऊर्जा ऑपरेटर के साथ आता है।इस प्रकार घूर्णी आक्रमण के लिए हमारे पास [r, & nbsp; h] = 0 होना चाहिए।

अमानवीय रोटेशन के लिए (इस उदाहरण के लिए XY-PLANE में; यह किसी भी विमान के लिए भी ऐसा किया जा सकता है) एक कोण d ((infinitesimal) रोटेशन ऑपरेटर द्वारा किया जाता है

तब

इस प्रकार

दूसरे शब्दों में कोणीय गति संरक्षित है।

यह भी देखें

संदर्भ

  • Stenger, Victor J. (2000). Timeless Reality. Prometheus Books. Especially chpt. 12. Nontechnical.