अनंत पर बिंदु

From Vigyanwiki
Revision as of 14:43, 14 December 2022 by alpha>Neetua08
अनंत पर बिंदु के साथ वास्तविक रेखा; इसे वास्तविक प्रक्षेप्य रेखा कहा जाता है।

ज्यामिति में, अनंत या आदर्श बिंदु पर एक बिंदु प्रत्येक पंक्ति के "अंत" में एक आदर्शित सीमित बिंदु होता है।

एफाइन समतल (यूक्लिडियन समतल सहित) के स्थितियों में, समतल की समानांतर रेखाओं के प्रत्येक पेंसिल (गणित) के लिए एक आदर्श बिंदु होता है। इन बिंदुओं से मिलकर एक प्रक्षेपी तल का निर्माण होता है, जिसमे से कोई भी बिंदु अलग नहीं किया जा सकता है, यदि हम "भूल" जाते हैं कि कौन से बिंदु जोड़े गए थे। यह किसी भी क्षेत्र पर एक ज्यामिति के लिए लागू होता है, और सामान्यतः किसी भी विभाजन वलय पर लागू होता है।[1]


वास्तविक स्थितियों में, अनंत पर एक बिंदु एक स्थलीय रूप से बंद वक्र में एक रेखा को पूर्ण करता है। उच्च आयामों में, अनंत पर सभी बिंदु एक आयाम के एक प्रक्षेपी उप-स्थान का निर्माण करते हैं, जो पूरे प्रक्षेपी स्थान से कम होता है, जिससे वे संबंधित होते हैं। अनंत पर एक बिंदु को जटिल रेखा (जिसे जटिल समतल के रूप में माना जा सकता है) के रूप में भी जोड़ा जा सकता है, जिससे इसे एक बंद सतह में परिवर्तित कर दिया जाता है जिसे जटिल प्रक्षेपी रेखा, सीपी1 के रूप में जाना जाता है, जिसे रीमैन क्षेत्र भी कहा जाता है (जब जटिल संख्याओं को प्रत्येक बिंदु पर छायांकित किया जाता है)।

अतिपरवलीय स्थान की स्थितियों में, प्रत्येक पंक्ति में दो विशिष्ट आदर्श बिंदु होते हैं। यहाँ, आदर्श बिंदुओं का समुच्चय एक द्विघात (प्रक्षेपी ज्यामिति) का रूप ले लेता है।

एफ़िन ज्यामिति

उच्च आयाम के एफ़िन स्थान या यूक्लिडियन स्थान में, अनंत पर बिंदु वे बिंदु होते हैं जो प्रक्षेपीय पूर्णत प्राप्त करने के लिए उस स्थान पर जोड़े जाते हैं। अनंत पर स्थित बिंदुओं के समुच्चय को स्थान के आयाम के आधार पर, अनंत पर रेखा, अनंत पर समतल या अनंत पर परवलय समतल कहा जाता है, इन सभी स्थितियों में एक कम आयाम का प्रक्षेपी स्थान उपस्थित होता है।

एक क्षेत्र पर एक प्रक्षेपण स्थान एक चिकनी बीजगणितीय विविधता के रूप में है, वही यह तथ्य अनंत पर बिंदुओं के समुच्चय के लिए सत्य है। इसी तरह, यदि आधार क्षेत्र वास्तविक या जटिल क्षेत्र है, तो अनंत पर स्थित बिंदुओं का समूह कई गुना होता है।

परिप्रेक्ष्य

कलात्मक आरेखण और तकनीकी परिप्रेक्ष्य में, समानांतर रेखाओं के एक वर्ग के अनंत पर बिंदु के चित्र तल पर प्रक्षेपण को उनका लुप्त बिंदु कहा जाता है।

अतिपरवलीय ज्यामिति

अतिपरवलीय ज्यामिति में, अनंत पर बिंदुओं को सामान्यतः आदर्श बिंदु कहा जाता है। यूक्लिडियन और दीर्घवृत्त ज्यामिति के विपरीत, प्रत्येक रेखा में अनंत पर दो बिंदु होते हैं: एक रेखा l और एक बिंदु P दिया गया है जो L पर नहीं है, दाएँ और बाएँ-सीमित समानांतर अनंत पर अलग-अलग बिंदुओं पर स्पर्शोन्मुख रूप से अभिसरित होते हैं।

अनंत पर सभी बिंदु एक साथ केली पूर्ण या परवलयाकार समतल की सीमा बनाते हैं।

प्रक्षेप्य ज्यामिति

एक प्रक्षेपी तल में बिंदुओं और रेखाओं की एक समरूपता उत्पन्न होती है: जिस प्रकार बिंदुओं की एक जोड़ी एक रेखा का निर्धारण करती है, उसी प्रकार रेखाओं की एक जोड़ी एक बिंदु का निर्धारण करती है। समानांतर रेखाओं का अस्तित्व अनंत पर एक बिंदु स्थापित करने की ओर ले जाता है जो इन समानांतरों रेखाओं के प्रतिच्छेदन बिंदुओं का प्रतिनिधित्व करता है। यह स्वयंसिद्ध समरूपता सुचित्रित परिप्रेक्ष्य के अध्ययन से विकसित हुई है जहां एक केंद्रीय प्रक्षेपण के रूप में एक समानांतर प्रक्षेपण उत्पन्न होता है जहां केंद्र C अनंत पर या 'लाक्षणिक बिंदु' पर स्थित एक बिंदु है।[2] बिंदुओं और रेखाओं की स्वयंसिद्ध समरूपता को द्वैत (प्रक्षेपी ज्यामिति) कहा जाता है।

यद्यपि अनंत पर एक बिंदु को प्रक्षेप्य सीमा के किसी भी अन्य बिंदु के बराबर माना जाता है, प्रक्षेपी निर्देशांक वाले बिंदुओं के प्रतिनिधित्व में, विशिष्ट टिप्पणी किया जाता है: परिमित बिंदुओं को अंतिम समन्वय में 1 के साथ दर्शाया जाता है जबकि अनंत पर एक बिंदु 0 होता है तो वहाँ अनंत पर बिंदुओं का प्रतिनिधित्व करने की आवश्यकता है कि परिमित बिंदुओं के स्थान से परे एक अतिरिक्त समन्वय की आवश्यकता होती है।

अन्य सामान्यीकरण

इस निर्माण को टोपोलॉजिकल स्पेस के लिए सामान्यीकृत किया जा सकता है। किसी दिए गए स्थान के लिए अलग-अलग कॉम्पैक्टिफिकेशन मौजूद हो सकते हैं, लेकिन मनमाने ढंग से टोपोलॉजिकल स्पेस एलेक्जेंड्रॉफ़ एक्सटेंशन को स्वीकार करता है, जिसे वन-पॉइंट संघनन (गणित)गणित) भी कहा जाता है, जब मूल स्थान स्वयं कॉम्पैक्ट जगह नहीं होता है। प्रोजेक्टिव लाइन (मनमाने क्षेत्र पर) अलेक्जेंड्रॉफ़ एक्सटेंशन है संबंधित क्षेत्र का। इस प्रकार वृत्त वास्तविक रेखा का एक-बिंदु संघनन है, और गोला समतल का एक-बिंदु संघनन है। प्रोजेक्टिव स्पेस पीn के लिए n> 1 नीचे बताए गए कारण के लिए संबंधित एफ़िन रिक्त स्थान का एक-बिंदु संघनन नहीं है § Affine geometry, और आदर्श बिंदुओं के साथ अतिपरवलीय रिक्त स्थान की पूर्णता भी एक-बिंदु संघनन नहीं है।

यह भी देखें


इस पेज में लापता आंतरिक लिंक की सूची

  • वास्तविक प्रक्षेपण रेखा
  • प्रक्षेपी समतल
  • क्वाड्रिक (प्रक्षेपी ज्यामिति)
  • हाइपरसमतल अनंत पर
  • अनंत पर समतल
  • चिकनी बीजगणितीय किस्म
  • लोपी बिन्दु
  • समानांतर सीमित करना
  • असम्बद्ध रूप से
  • केली निरपेक्ष
  • अतिपरवलीय समतल
  • अभिसरण (गणित)
  • चित्रमय दृष्टिकोण
  • प्रक्षेपी निर्देशांक

संदर्भ

  1. Weisstein, Eric W. "अनंत पर इंगित करें". mathworld.wolfram.com (in English). Wolfram Research. Retrieved 28 December 2016.
  2. G. B. Halsted (1906) Synthetic Projective Geometry, page 7