सूक्ष्म पायसन

From Vigyanwiki
Revision as of 11:49, 31 January 2023 by Indicwiki (talk | contribs) (10 revisions imported from alpha:सूक्ष्म_पायसन)

सूक्ष्म पायसन तेल, पानी और सर्फेक्टेंट के स्पष्ट, थर्मोडायनामिक रूप से स्थिर आइसोट्रोपिक तरल मिश्रण होते हैं, जो अधिकांश पृष्ठसक्रियकारक के संयोजन में होते हैं। जलीय चरण (पदार्थ) में नमक और/या अन्य अवयव हो सकते हैं, और तेल वास्तविक में विभिन्न हाइड्रोकार्बन का जटिल मिश्रण हो सकता है। साधारण पायसन के विपरीत, सूक्ष्मपायसन घटकों के सरल मिश्रण पर बनते हैं और सामान्य पायसन के निर्माण में सामान्यतः उपयोग की जाने वाली उच्च कतरनी (द्रव) स्थितियों की आवश्यकता नहीं होती है। सूक्ष्मपायसन के तीन मूलभूत प्रकार प्रत्यक्ष हैं (तेल पानी में फैला हुआ है, ओ/डब्ल्यू), व्युत्क्रम (तेल में फैला हुआ पानी, डब्ल्यू/ओ) और बाइकॉन्टिन्यूअस।

सूक्ष्मपायसन जैसे त्रिगुट प्रणालियों में, जहां दो अमिश्रणीय चरण (पानी और 'तेल') एक सर्फेक्टेंट के साथ उपस्थित होते हैं, सर्फेक्टेंट अणु तेल और पानी के बीच इंटरफेस में मोनोलेयर बना सकते हैं, जो तेल के चरण में घुले सर्फेक्टेंट अणुओं की हाइड्रोफोबिक पूंछ और जलीय चरण में हाइड्रोफिलिक हेड समूहों के साथ हो सकता है।

आईयूपीएसी परिभाषा

सूक्ष्म-पायसन: पानी, तेल और सर्फेक्टेंट (ओं) से बना फैलाव जो आइसोट्रोपिक और थर्मोडायनामिक रूप से स्थिर प्रणाली है जिसमें फैला हुआ डोमेन व्यास लगभग 1 से 100 एनएम, सामान्यतः 10 से 50 एनएम तक भिन्न होता है।

नोट 1: सूक्ष्म-पायसन में फैली हुई अवस्था के डोमेन या तो गोलाकार होते हैं या आपस में जुड़े होते हैं (एक निरंतर सूक्ष्म-पायसन देने के लिए)।

नोट 2: सूक्ष्म-पायसन में बूंदों का औसत व्यास सामान्यतः "पायसन' कहा जाता है) एक मिलीमीटर के निकट है (अर्थात्, 10−3 मी) . इसलिए, चूंकि सूक्ष्म- का अर्थ 10−6और पायसन का अर्थ है कि बिखरी हुई चरण की बूंदों का व्यास 10−3 मीटर के निकट होता है, सूक्ष्म-पायसन एक सिस्टम को दर्शाता है जिसमें 10−6 × 10−3 m = 10−9 m में परिक्षिप्त चरण की आकार सीमा श्रेणी।

नोट 3: "सूक्ष्म-पायसन" शब्द का विशेष अर्थ हो गया है। फैली हुई अवस्था की इकाइयाँ सामन्यतः पृष्ठसक्रियकारक और/या पृष्ठसक्रियकारक-cosurfactant (जैसे, स्निग्ध अल्कोहल) प्रणालियों द्वारा स्थिर की जाती हैं।

नोट 4: शब्द "तेल" किसी भी पानी में अघुलनशील तरल को संदर्भित करता है। और एप्लाइड केमिस्ट्री]] |date=2011|volume=83|issue=12|pages=2229–2259|doi=10.1351/PAC-REC-10-06-03|url=http://pac.iupac.org/ प्रकाशन/पीएसी/पीडीएफ/2011/पीडीएफ/8312x2229.पीडीएफ | last1 = स्लोमकोव्स्की | First1 = स्टैनिस्लाव}}</ref>


सूक्ष्म-पायसन पोलीमराइज़ेशन: पायसन पोलीमराइज़ेशन जिसमें प्रारंभिक प्रणाली सूक्ष्म-पायसन है और अंतिम लेटेक्स में जलीय माध्यम में बिखरे बहुलक के कोलाइडल कण सम्मिलित हैं।

टिप्पणी: सूक्ष्म-पायसन पोलीमराइज़ेशन में बनने वाले पॉलीमर कणों के व्यास सामान्यतः 10 और 50 एनएम के बीच होते हैं। journal=Pure and Applied Chemical|date=2011|volume=83|issue=12|pages=2229–2259|doi=10.1351/PAC-REC-10-06-03|url=http://pac iupac.org/publications/pac/pdf/2011/pdf/8312x2229.pdf | last1 = स्लोमकोव्स्की | First1 = स्टैनिस्लाव}}</ref>


उपयोग करता है

सूक्ष्मपायसन के कई व्यावसायिक रूप से महत्वपूर्ण उपयोग हैं:

इन प्रणालियों पर किए गए अधिकांश कार्य संवर्धित तेल प्राप्ति के लिए झरझरा बलुआ पत्थर में फंसे पेट्रोलियम को जुटाने के लिए उनके संभावित उपयोग से प्रेरित हैं। इन प्रणालियों के प्रयोग के लिए मौलिक कारण यह है कि सूक्ष्मपायसन चरण में कभी-कभी एक अलग तेल या जलीय चरण के साथ अल्ट्रालो इंटरफ़ेशियल तनाव होता है, जो धीमे प्रवाह या कम दबाव के ढाल की स्थिति में भी उन्हें ठोस चरणों से मुक्त या गतिशील कर सकता है।

सूक्ष्मपायसन में औद्योगिक अनुप्रयोग भी होते हैं, उनमें से एक पॉलीमर का संश्लेषण है। सूक्ष्मपायसन बहुलकीकरण जटिल विषम प्रक्रिया है जहाँ जलीय और कार्बनिक चरणों के बीच मोनोमर्स, फ्री रेडिकल्स और अन्य प्रजातियों (जैसे चेन ट्रांसफर एजेंट, सह-सर्फैक्टेंट और इनहिबिटर) का परिवहन होता है।[2] अन्य विषम पोलीमराइज़ेशन प्रक्रियाओं (निलंबन या पायस) की तुलना में सूक्ष्मपायसन पोलीमराइज़ेशन अधिक जटिल प्रणाली है। पोलीमराइज़ेशन दर को चरणों, कण न्यूक्लिएशन, और रेडिकल्स के सोखने और अवशोषण के बीच मोनोमर विभाजन द्वारा नियंत्रित किया जाता है। कण स्थिरता सर्फैक्टेंट की मात्रा और प्रकार और फैलाने वाले माध्यम के पीएच से प्रभावित होती है।[3]

इसका उपयोग नैनोपार्टिकल्स बनाने की प्रक्रिया में भी किया जाता है।

सूक्ष्मपायसन पोलीमराइज़ेशन के कैनेटीक्स में पायसन पोलीमराइज़ेशन कैनेटीक्स के साथ बहुत कुछ है, जिसकी सबसे विशिष्ट विशेषता कंपार्टमेंटलाइज़ेशन है, जहाँ कणों के अंदर बढ़ने वाले रेडिकल्स एक दूसरे से अलग हो जाते हैं, इस प्रकार समाप्ति को अधिक सीमा तक दबा दिया जाता है और परिणामस्वरूप, पोलीमराइज़ेशन की उच्च दर प्रदान करता है।

सिद्धांत

सूक्ष्मपायसन गठन, स्थिरता और चरण व्यवहार से संबंधित विभिन्न सिद्धांतों को वर्षों से प्रस्तावित किया गया है। उदाहरण के लिए, उनके थर्मोडायनामिक स्थिरता के लिए स्पष्टीकरण यह है कि तेल / पानी के फैलाव को सर्फेक्टेंट की उपस्थिति से स्थिर किया जाता है और उनके गठन में तेल / पानी के इंटरफेस पर सर्फेक्टेंट फिल्म के लोचदार गुण सम्मिलित होते हैं, जिसमें पैरामीटर के रूप में फिल्म की वक्रता और कठोरता सम्मिलित है। इन पैरामीटरों में अनुमानित या मापा दबाव और/या तापमान निर्भरता (और/या जलीय चरण की लवणता) हो सकती है, जिसका उपयोग सूक्ष्मपायसन की स्थिरता के क्षेत्र का अनुमान लगाने के लिए किया जा सकता है, या उस क्षेत्र को चित्रित करने के लिए किया जा सकता है जहां तीन सहवर्ती चरण होते हैं। , उदाहरण के लिए- सह-अस्तित्व वाले तेल या जलीय चरण के साथ सूक्ष्मपायसन के इंटरफेशियल तनाव की गणना भी अधिकांश विशेष ध्यान देने वाली होती है और कभी-कभी उनके निर्माण को निर्देशित करने के लिए उपयोग की जा सकती है।

इतिहास और शब्दावली

सूक्ष्मपायसन शब्द का पहली बार उपयोग 1943 में कैम्ब्रिज विश्वविद्यालय में रसायन विज्ञान के प्रोफेसर टीपी होर और जेएच शुलमैन द्वारा किया गया था। इन प्रणालियों के लिए वैकल्पिक नाम अधिकांश उपयोग किए जाते हैं, जैसे कि पारदर्शी पायस, सूजन वाले मिसेल, मिसेलर समाधान और घुलनशील तेल। अधिक भ्रामक रूप से अभी भी, सूक्ष्मपायसन शब्द एकल आइसोट्रोपिक चरण को संदर्भित कर सकता है जो तेल, पानी और सर्फेक्टेंट का मिश्रण है, या जो मुख्य रूप से तेल और / या जलीय चरणों के सह-अस्तित्व के साथ संतुलन में है, या अन्य गैर-आइसोट्रोपिक चरणों के लिए भी है। जैसा कि बाइनरी सिस्टम (जल/सर्फ़ेक्टेंट या तेल/सर्फ़ेक्टेंट) में होता है, विभिन्न प्रकार की स्व-इकट्ठी संरचनाएं बनाई जा सकती हैं, उदाहरण के लिए, (उल्टे) गोलाकार और बेलनाकार मिसेल से लेकर परतदार चरणों और बाइकॉन्टिन्यूस सूक्ष्मपायसन तक, जो मुख्य रूप से तेल या जलीय चरणों के साथ सह-अस्तित्व में हो सकते हैं।[4]


चरण आरेख

सूक्ष्मपायसन डोमेन को सामान्यतः टर्नरी-फेज आरेखों के निर्माण द्वारा चित्रित किया जाता है।

सूक्ष्मपायसन बनाने के लिए तीन घटक मूलभूत आवश्यकता हैं: दो अमिश्रणीय तरल पदार्थ और सर्फेक्टेंट। अधिकांश सूक्ष्मपायसन तेल और पानी का उपयोग अमिश्रणीय तरल जोड़े के रूप में करते हैं। यदि कॉसुरफैक्टेंट का उपयोग किया जाता है, तो इसे कभी-कभी एक घटक के रूप में सर्फेक्टेंट के निश्चित अनुपात में प्रदर्शित किया जा सकता है, और छद्म-घटक के रूप में माना जाता है। इन तीन घटकों की सापेक्ष मात्रा को त्रिगुट चरण आरेख में दर्शाया जा सकता है। योशिय्याह विलार्ड गिब्स चरण आरेखों का उपयोग सिस्टम के चरण व्यवहार पर विभिन्न चरणों के आयतन अंशों में परिवर्तन के प्रभाव को दिखाने के लिए किया जा सकता है।

सिस्टम बनाने वाले तीन घटक प्रत्येक त्रिभुज के शीर्ष पर पाए जाते हैं, जहां उनका संगत आयतन अंश 100% होता है। उस कोने से दूर जाने से उस विशिष्ट घटक का आयतन अंश कम हो जाता है और एक या दो अन्य घटकों का आयतन अंश बढ़ जाता है। त्रिभुज के अन्दर प्रत्येक बिंदु तीन घटकों या छद्म-घटकों के मिश्रण की संभावित संरचना का प्रतिनिधित्व करता है, जिसमें एक, दो या तीन चरणों का (आदर्श रूप से, गिब्स के चरण नियम के अनुसार) सम्मिलित हो सकता है। ये बिंदु उनके बीच की सीमाओं के साथ क्षेत्रों को बनाने के लिए गठबंधन करते हैं, जो निरंतर तापमान और दबाव पर प्रणाली के चरण व्यवहार का प्रतिनिधित्व करते हैं।

गिब्स चरण आरेख, चूंकि, प्रणाली की स्थिति का अनुभवजन्य दृश्य अवलोकन है और किसी दिए गए संरचना के अन्दर चरणों की सही संख्या को व्यक्त कर सकता है या नहीं भी कर सकता है। स्पष्ट रूप से स्पष्ट एकल चरण योगों में अभी भी कई आइसो-ट्रॉपिक चरण सम्मिलित हो सकते हैं (उदाहरण के लिए स्पष्ट रूप से स्पष्ट डियोक्टाइल सोडियम सल्फोनसुसिनेट सूक्ष्मपायसन में कई चरण होते हैं)। चूँकि ये प्रणालियाँ अन्य चरणों के साथ संतुलन में हो सकती हैं, कई प्रणालियाँ, विशेष रूप से दोनों दो अमिश्रणीय चरणों के उच्च आयतन अंशों के साथ, इस संतुलन को बदलने वाली किसी भी चीज़ से आसानी से अस्थिर हो सकती हैं, उदा। उच्च या निम्न तापमान या सतह तनाव संशोधित करने वाले एजेंटों को जोड़ना।

चूंकि, अपेक्षाकृत स्थिर सूक्ष्मपायसन के उदाहरण मिल सकते हैं। ऐसा माना जाता है कि कार के इंजन के तेल में एसिड के निर्माण को हटाने के तंत्र में कम पानी के चरण की मात्रा, पानी-में-तेल (डब्लू/ओ) सूक्ष्मपायसन सम्मिलित हैं। सैद्धांतिक रूप से, इंजन तेल के माध्यम से जलीय एसिड बूंदों का परिवहन तेल में माइक्रोडिस्पर्स कैल्शियम कार्बोनेट कणों के लिए सबसे कुशल होना चाहिए जब जलीय बूंदें इतनी छोटी होती हैं कि वे एकल हाइड्रोजन आयन का परिवहन कर सकें (बूंदें जितनी छोटी होंगी, अम्ल जल की बूंदों की संख्या उतनी ही अधिक होगी, उदासीनीकरण उतनी ही तेजी से होगा)। इस तरह के सूक्ष्मपायसन संभवतः ऊंचे तापमान की विस्तृत विस्तृत श्रृंखला में बहुत स्थिर होते हैं।

संदर्भ

  1. Gibaud, Stéphane (2012). "Microemulsions for oral administration and their therapeutic applications" (PDF). Expert Opinion on Drug Delivery. 9: 937–951. doi:10.1517/17425247.2012.694865. PMID 22663249.
  2. "A Microemulsion Process for Producing Acrylamide-Alkyl Acrylamide Copolymers", S. R. Turner, D. B. Siano and J. Bock, U. S. Patent No. 4,521,580, June 1985.
  3. Ovando V.M. Polymer Bulletin 2005, 54, 129-140
  4. T. P. Hoar et al., Nature, 1943, (152), 102-103.


ग्रन्थसूची

  • Prince, Leon M., Microemulsions in Theory and Practice Academic Press (1977) ISBN 0-12-565750-1.
  • Rosano, Henri L and Clausse, Marc, eds., Microemulsion Systems (Surfactant Science Series) Marcel Dekker, Inc. (1987) ISBN 0-8247-7439-6