थर्मोइलेक्ट्रिक प्रभाव

From Vigyanwiki

थर्मोइलेक्ट्रिक प्रभाव एक थर्मोकपल के माध्यम से तापमान अंतर का विद्युत वोल्टेज में प्रत्यक्ष रूपांतरण है और इसके विपरीत।[1] एक थर्मोइलेक्ट्रिक डिवाइस वोल्टेज बनाता है जब प्रत्येक तरफ एक अलग तापमान होता है। इसके विपरीत, जब उस पर वोल्टेज लगाया जाता है, तोगर्मी एक तरफ से दूसरी तरफ हस्तांतरण होती है, जिससे तापमान मेंअंतर पैदा होता है। परमाणु पैमाने पर, लागू तापमान ढाल सामग्री में चार्ज वाहक को गर्म पक्ष से ठंडे पक्ष में फैलाने का कारण बनता है।

इस प्रभाव का उपयोग थर्मोइलेक्ट्रिक जनरेटर, तापमान को मापने या वस्तुओं के तापमान को बदलने के लिए किया जा सकता है। क्योंकि हीटिंग और कूलिंग की दिशा लागू वोल्टेज से प्रभावित होती है, थर्मोइलेक्ट्रिक उपकरणों का उपयोग तापमान नियंत्रकों के रूप में किया जा सकता है।

थर्मोइलेक्ट्रिक प्रभाव शब्द में तीन अलग-अलग पहचाने गए प्रभाव शामिल हैं: सीबेक प्रभाव, पेल्टियर प्रभाव और थॉमसन प्रभाव। सीबेक और पेल्टियर प्रभाव एक ही भौतिक प्रक्रिया की विभिन्न अभिव्यक्तियाँ हैं; पाठ्यपुस्तकें इस प्रक्रिया को पेल्टियर-सीबेक प्रभाव के रूप में संदर्भित कर सकती हैं (फ्रांसीसी भौतिक विज्ञानी जीन चार्ल्स अथानेसे पेल्टियर और बाल्टिक जर्मन भौतिक विज्ञानी थॉमस जोहान सीबेक द्वारा स्वतंत्र खोजों से अलगाव प्राप्त होता है)। थॉमसन प्रभाव पेल्टियर-सीबेक मॉडल का एक विस्तार है और इसका श्रेय विलियम थॉमसन, प्रथम बैरन केल्विन को दिया जाता है।

जूल हीटिंग,गर्मी जो विद्युत कंडक्टर सामग्री के माध्यम से वर्तमान पारित होने पर उत्पन्न होती है, को आम तौर पर थर्मोइलेक्ट्रिक प्रभाव नहीं कहा जाता है। पेल्टियर-सीबेक और थॉमसन प्रभाव प्रतिवर्ती प्रक्रिया (थर्मोडायनामिक्स) हैं,[2] जबकि जूल हीटिंग नहीं है।

सीबेक प्रभाव

Seebeck effect in a thermopile made from iron and copper wires
थर्मोइलेक्ट्रिक जनरेटर के रूप में कॉन्फ़िगर किए गए विभिन्न सीबेक गुणांक (पी-डोपिंग (सेमीकंडक्टर) और एन-डॉप्ड अर्धचालक) की सामग्री से बना एक थर्मोइलेक्ट्रिक सर्किट। यदि तल पर लोड रोकनेवाला को वाल्टमीटर से बदल दिया जाता है, तो सर्किट तापमान-संवेदी थर्मोकपल के रूप में कार्य करता है।

सीबेक प्रभाव वैद्युतवाहक बल, इलेक्ट्रोमोटिव बल (ईएमएफ) है जो विद्युत प्रवाहकीय सामग्री के दो बिंदुओं पर विकसित होता है जब उनके बीच तापमान अंतर होता है। जब वहाँ विद्युत प्रवाहकीय सामग्री के दो बिंदु होते हैं

उनके बीच तापमान का अंतर है। ईएमएफ को सीबेक ईएमएफ (या थर्मो/थर्मल/थर्मोइलेक्ट्रिक ईएमएफ) कहा जाता है। ईएमएफ और तापमान अंतर के बीच का अनुपात सीबेक गुणांक है। एक थर्मोकपल दो भिन्न सामग्रियों के लिए एक गर्म और ठंडे अंत में संभावित अंतर को मापता है। यह संभावित अंतर गर्म और ठंडे सिरों के बीच तापमान के अंतर के समानुपाती होता है। सबसे पहले 1794 में इतालवी वैज्ञानिक अलेक्जेंडर वोल्टा द्वारा खोजा गया था।[3][note 1] इसका नाम बाल्टिक जर्मन भौतिक विज्ञानी थॉमस जोहान सीबेक के नाम पर रखा गया है, जिन्होंने 1821 में स्वतंत्र रूप से इसे फिर से खोजा।[4] यह देखा गया कि एक कंपास सुई जोड़ों के बीच एक लागू तापमान अंतर के साथ, दो जगहों पर दो अलग-अलग धातुओं से जुड़े एक बंद लूप द्वारा विक्षेपित हो जाएगी। ऐसा इसलिए था क्योंकि विभिन्न धातुओं में इलेक्ट्रॉन ऊर्जा का स्तर अलग-अलग स्थानांतरित हुआ, जिससे जंक्शनों के बीच एक संभावित अंतर पैदा हुआ, जिसने बदले में तारों के माध्यम से एक विद्युत प्रवाह बनाया, और इसलिए तारों के चारों ओर एक चुंबकीय क्षेत्र बना। सीबेक ने यह नहीं पहचाना कि एक विद्युत प्रवाह शामिल था, इसलिए उन्होंने घटना को थर्मोमैग्नेटिक प्रभाव कहा। डेनिश भौतिक विज्ञानी हंस क्रिश्चियन क्रस्टेड ने निरीक्षण को सुधारा और थर्मोइलेक्ट्रिकिटी शब्द गढ़ा।[5]सीबेक प्रभाव एक इलेक्ट्रोमोटिव बल (EMF) का एक उत्कृष्ट उदाहरण है और किसी भी अन्य EMF की तरह मापने योग्य धाराओं या वोल्टेज की ओर ले जाता है। स्थानीय वर्तमान घनत्व द्वारा दिया जाता है

कहाँ पे स्थानीय वोल्टेज है,[6] और स्थानीय विद्युत चालकता है। सामान्य तौर पर, सीबेक प्रभाव को इलेक्ट्रोमोटिव क्षेत्र के निर्माण के द्वारा स्थानीय रूप से वर्णित किया जाता है

जहाँ पे सीबेक गुणांक (थर्मोपॉवर के रूप में भी जाना जाता है), स्थानीय सामग्री की एक संपत्ति है, और तापमान प्रवणता है।

सीबेक गुणांक आमतौर पर तापमान के कार्य के रूप में भिन्न होते हैं और कंडक्टर की संरचना पर दृढ़ता से निर्भर करते हैं। कमरे के तापमान पर सामान्य सामग्री के लिए, सीबेक गुणांक -100 μV/K से +1,000 μV/K तक मान में हो सकता है (अधिक जानकारी के लिए सीबेक गुणांक लेख देखें)।

यदि सिस्टम एक स्थिर स्थिति तक पहुँचता है, जहाँ , तब वोल्टेज प्रवणता केवल ईएमएफ द्वारा दी जाती है: . यह सरल संबंध, जो चालकता पर निर्भर नहीं करता है, थर्मोकपल में तापमान अंतर को मापने के लिए उपयोग किया जाता है; एक ज्ञात संदर्भ तापमान पर वोल्टेज मापन करके एक पूर्ण तापमान पाया जा सकता है। अज्ञात संरचना की एक धातु को उसके थर्मोइलेक्ट्रिक प्रभाव द्वारा वर्गीकृत किया जा सकता है यदि ज्ञात संरचना की धातु जांच को स्थिर तापमान पर रखा जाता है और अज्ञात नमूने के संपर्क में रखा जाता है जो जांच तापमान पर स्थानीय रूप से गर्म होता है। धातु मिश्र धातुओं की पहचान करने के लिए इसका व्यावसायिक रूप से उपयोग किया जाता है। श्रृंखला में थर्मोकपल एक थर्मापाइल बनाते हैं। ऊष्माविद्युत जनित्रों का उपयोग ऊष्मा विभेदों से शक्ति उत्पन्न करने के लिए किया जाता है।


पेल्टियर प्रभाव

सीबेक सर्किट को थर्मोइलेक्ट्रिक कूलिंग के रूप में कॉन्फ़िगर किया गया है

जब किसी थर्मोकपल के परिपथ से विद्युत धारा प्रवाहित की जाती है, तो एक जंक्शन पर ऊष्मा उत्पन्न होती है और दूसरे जंक्शन पर अवशोषित होती है। दो अलग-अलग कंडक्टरों के विद्युतीकृत जंक्शन पर हीटिंग या कूलिंग की उपस्थिति को पेल्टियर प्रभाव के रूप में जाना जाता है। प्रभाव का नाम फ्रांसीसी भौतिक विज्ञानी जीन चार्ल्स अथानास पेल्टियर के नाम पर रखा गया है, जिन्होंने 1834 में इसकी खोज की थी।[7] जब दो कंडक्टर, ए और बी के बीच एक जंक्शन के माध्यम से प्रवाहित करने के लिए करंट लगाया जाता है, तो जंक्शन पर गर्मी उत्पन्न या हटाई जा सकती है। प्रति यूनिट समय में जंक्शन पर उत्पन्न पेल्टियर हीट है

कहाँ पे और कंडक्टर ए और बी के पेल्टियर गुणांक हैं, और विद्युत प्रवाह है (A से B तक)। उत्पन्न कुल गर्मी अकेले पेल्टियर प्रभाव से निर्धारित नहीं होती है, क्योंकि यह जूल हीटिंग और थर्मल-ग्रेडिएंट प्रभाव (नीचे देखें) से भी प्रभावित हो सकती है।

पेल्टियर गुणांक यह दर्शाता है कि प्रति यूनिट चार्ज में कितनी गर्मी होती है। चूंकि चार्ज करंट एक जंक्शन पर निरंतर होना चाहिए, संबंधित गर्मी का प्रवाह एक विच्छिन्नता विकसित करेगा यदि और कुछ अलग हैं। पेल्टियर प्रभाव को सीबेक प्रभाव (काउंटर-इलेक्ट्रोमोटिव बल के अनुरूप )के बैक-एक्शन समकक्ष के रूप में माना जा सकता है: यदि एक साधारण थर्मोइलेक्ट्रिक सर्किट बंद है, तो सीबेक प्रभाव एक करंट चलाएगा, जो बदले में (पेल्टियर प्रभाव द्वारा) हमेशा गर्म से ठंडे जंक्शन तक गर्मी स्थानांतरित करेगा। पेल्टियर और सीबेक प्रभावों के बीच घनिष्ठ संबंध को उनके गुणांकों के बीच सीधे संबंध में देखा जा सकता है: (#Thomson संबंध देखें)।

एक विशिष्ट पेल्टियर ऊष्मा पम्प में श्रृंखला में कई जंक्शन शामिल होते हैं, जिसके माध्यम से एक धारा संचालित होती है। पेल्टियर प्रभाव के कारण कुछ जंक्शन गर्मी खो देते हैं, जबकि अन्य गर्मी प्राप्त करते हैं। थर्मोइलेक्ट्रिक गर्मी पंप इस घटना का फायदा उठाते हैं, जैसा कि रेफ्रिजरेटर में पाए जाने वाले थर्मोइलेक्ट्रिक कूलिंग डिवाइस करते हैं।

थॉमसन प्रभाव

विभिन्न सामग्रियों में, सीबेक गुणांक तापमान में स्थिर नहीं होता है, और इसलिए तापमान में एक स्थानिक प्रवणता के परिणामस्वरूप सीबेक गुणांक में ढाल हो सकती है। यदि इस ढाल के माध्यम से एक धारा प्रवाहित की जाती है, तो पेल्टियर प्रभाव का एक सतत संस्करण उत्पन्न होगा। इस थॉमसन प्रभाव की भविष्यवाणी की गई थी और बाद में 1851 में विलियम थॉमसन, प्रथम बैरन केल्विन (विलियम थॉमसन) ने इसका अवलोकन किया।[8] यह एक तापमान प्रवणता के साथ एक धारावाही चालक के ताप या शीतलन का वर्णन करता है।

यदि एक वर्तमान घनत्व एक सजातीय कंडक्टर के माध्यम से पारित किया जाता है, थॉमसन प्रभाव प्रति इकाई मात्रा में गर्मी उत्पादन दर की भविष्यवाणी करता है

कहाँ पे तापमान प्रवणता है, और थॉमसन गुणांक है। थॉमसन गुणांक सीबेक गुणांक से संबंधित है ( नीचे देखें)। हालाँकि, यह समीकरण जूल ताप और साधारण तापीय चालकता की उपेक्षा करता है (नीचे पूर्ण समीकरण देखें)।

पूर्ण थर्मोइलेक्ट्रिक समीकरण

अक्सर, उपरोक्त प्रभावों में से एक से अधिक वास्तविक थर्मोइलेक्ट्रिक डिवाइस के संचालन में शामिल होते हैं। सीबेक प्रभाव, पेल्टियर प्रभाव और थॉमसन प्रभाव को यहां वर्णित एक सुसंगत और कठोर तरीके से एक साथ इकट्ठा किया जा सकता है; इसमें जूल तापन और साधारण ऊष्मा चालन के प्रभाव भी शामिल हैं। जैसा कि ऊपर कहा गया है, सीबेक प्रभाव एक इलेक्ट्रोमोटिव बल उत्पन्न करता है, जिससे वर्तमान समीकरण बनता है[9]

पेल्टियर और थॉमसन प्रभावों का वर्णन करने के लिए, हमें ऊर्जा के प्रवाह पर विचार करना चाहिए। यदि तापमान और चार्ज समय के साथ बदलते हैं, तो ऊर्जा संचय के लिए पूर्ण थर्मोइलेक्ट्रिक समीकरण, , है[9]

कहाँ पे तापीय चालकता है। पहला शब्द ऊष्मीय चालन #फूरियर का नियम है|फूरियर का ऊष्मा चालन नियम, और दूसरा शब्द धाराओं द्वारा वहन की जाने वाली ऊर्जा को दर्शाता है। तीसरा कार्यकाल, , बाहरी स्रोत से जोड़ा गया ताप है (यदि लागू हो)।

यदि सामग्री स्थिर स्थिति में पहुंच गई है, तो चार्ज और तापमान वितरण स्थिर हैं, इसलिए और . इन तथ्यों और दूसरे थॉमसन संबंध (नीचे देखें) का उपयोग करके, ऊष्मा समीकरण को सरल बनाया जा सकता है

मध्य पद जूल तापन है, और अंतिम पद में पेल्टियर ( जंक्शन पर) और थॉमसन ( थर्मल ढाल में) प्रभाव। के लिए सीबेक समीकरण के साथ संयुक्त , यह एक जटिल प्रणाली में स्थिर-स्थिति वोल्टेज और तापमान प्रोफाइल के लिए हल करने के लिए इस्तेमाल किया जा सकता है।

यदि सामग्री स्थिर अवस्था में नहीं है, तो एक पूर्ण विवरण में गतिशील प्रभाव जैसे विद्युत धारिता,प्रेरकत्व और ताप क्षमता से संबंधित होने की आवश्यकता है।

थर्मोइलेक्ट्रिक प्रभाव संतुलन थर्मोडायनामिक्स के दायरे से बाहर हैं। उनमें आवश्यक रूप से ऊर्जा का निरंतर प्रवाह शामिल है। कम से कम, वे परिवेश की एक विशेष व्यवस्था के साथ-साथ एक विशेष तरीके से व्यवस्थित तीन निकायों या थर्मोडायनामिक उपप्रणालियों को शामिल करते हैं। तीन शरीर दो अलग-अलग धातु और उनके जंक्शन क्षेत्र हैं। जंक्शन क्षेत्र एक विषम निकाय है, जिसे स्थिर माना जाता है, पदार्थ के प्रसार से समामेलन नहीं होता है। दो तापमान जलाशयों और दो विद्युत जलाशयों को बनाए रखने के लिए परिवेश की व्यवस्था की जाती है। एक कल्पना के लिए, लेकिन वास्तव में संभव नहीं है कार्य (थर्मोडायनामिक्स) संतुलन, गर्म जलाशय से ठंडे जलाशय में गर्मी हस्तांतरण को विद्युत जलाशयों द्वारा बनाए गए विशेष रूप से मिलान वोल्टेज अंतर से रोका जाना चाहिए, और विद्युत प्रवाह शून्य होना चाहिए। वास्तव में, एक स्थिर अवस्था के लिए, कम से कम कुछ ऊष्मा अंतरण या कुछ गैर-शून्य विद्युत प्रवाह होना चाहिए। ऊर्जा हस्तांतरण के दो तरीके, गर्मी और विद्युत प्रवाह के रूप में, तीन अलग-अलग निकायों और परिवेश की एक अलग व्यवस्था होने पर अलग-अलग हो सकते हैं। लेकिन मीडिया में निरंतर भिन्नता के मामले में, गर्मी हस्तांतरण और कार्य (ऊष्मप्रवैगिकी) को विशिष्ट रूप से अलग नहीं किया जा सकता है। यह अक्सर मानी जाने वाली थर्मोडायनामिक प्रक्रियाओं की तुलना में अधिक जटिल है, जिसमें केवल दो क्रमशः सजातीय सबसिस्टम जुड़े हुए हैं।

थॉमसन संबंध

1854 में, लॉर्ड केल्विन ने तीन गुणांकों के बीच संबंध पाया, जिसका अर्थ है कि थॉमसन, पेल्टियर और सीबेक प्रभाव एक प्रभाव के विभिन्न अभिव्यक्तियाँ हैं (विशिष्ट रूप से सीबेक गुणांक द्वारा विशेषता)।[10]पहला थॉमसन संबंध है[9]

कहाँ पे परम तापमान है, थॉमसन गुणांक है, पेल्टियर गुणांक है, और सीबेक गुणांक है। यह संबंध आसानी से दिखाया गया है कि थॉमसन प्रभाव पेल्टियर प्रभाव का एक सतत संस्करण है।

दूसरा थॉमसन संबंध है

यह संबंध पेल्टियर और सीबेक प्रभावों के बीच एक सूक्ष्म और मौलिक संबंध को व्यक्त करता है। यह ऑनसेगर पारस्परिक संबंध ों के आगमन तक संतोषजनक रूप से सिद्ध नहीं हुआ था, और यह ध्यान देने योग्य है कि यह दूसरा थॉमसन संबंध केवल समय-उलट सममित सामग्री के लिए गारंटीकृत है; यदि सामग्री को एक चुंबकीय क्षेत्र में रखा जाता है या स्वयं को चुंबकीय रूप से व्यवस्थित किया जाता है (लौह-चुंबकीय, प्रति-लौहचुंबकीय,आदि), तो दूसरा थॉमसन संबंध यहां दिखाए गए सरल रूप में नहीं होता है।[11]अब, दूसरे संबंध का प्रयोग करने पर, पहला थॉमसन संबंध बन जाता है

थॉमसन गुणांक तीन मुख्य थर्मोइलेक्ट्रिक गुणांकों में अद्वितीय है क्योंकि यह व्यक्तिगत सामग्रियों के लिए प्रत्यक्ष रूप से मापने योग्य एकमात्र है। पेल्टियर और सीबेक गुणांक केवल सामग्री के जोड़े के लिए आसानी से निर्धारित किए जा सकते हैं; इसलिए, किसी व्यक्तिगत सामग्री के लिए निरपेक्ष सीबेक या पेल्टियर गुणांक के मूल्यों को खोजना मुश्किल है।

यदि किसी सामग्री के थॉमसन गुणांक को एक विस्तृत तापमान सीमा पर मापा जाता है, तो इसे पेल्टियर और सीबेक गुणांकों के लिए पूर्ण मान निर्धारित करने के लिए थॉमसन संबंधों का उपयोग करके एकीकृत किया जा सकता है। यह केवल एक सामग्री के लिए किया जाना चाहिए, क्योंकि अन्य मूल्यों को संदर्भ सामग्री वाले थर्माकोपल्स में जोड़ीदार सीबेक गुणांकों को मापने के द्वारा निर्धारित किया जा सकता है और फिर संदर्भ सामग्री के पूर्ण सीबेक गुणांक को वापस जोड़ दिया जा सकता है। निरपेक्ष सीबेक गुणांक निर्धारण के बारे में अधिक जानकारी के लिए, सीबेक गुणांक देखें।

अनुप्रयोग


थर्मोइलेक्ट्रिक जनरेटर

सीबेक प्रभाव का उपयोग थर्मोइलेक्ट्रिक जनरेटर में किया जाता है, जो ताप इंजन की तरह काम करता है, लेकिन कम भारी होता है, इसमें कोई हिलता हुआ भाग नहीं होता है, और आमतौर पर अधिक महंगा और कम कुशल होता है। अपशिष्ट ताप को अतिरिक्त विद्युत शक्ति ( ऊर्जा पुनर्चक्रण का एक रूप) में परिवर्तित करने के लिए और ईंधन दक्षता बढ़ाने के लिएमोटर वाहन थर्मोइलेक्ट्रिक जनरेटर (एटीजी) के रूप में ऑटोमोबाइल में उनका उपयोग बिजली संयंत्रों में होता है। अंतरिक्ष जांच अक्सर एक ही तंत्र के साथ रेडियोआइसोटोप थर्मोइलेक्ट्रिक जनरेटर का उपयोग करते हैं लेकिन आवश्यक ताप अंतर उत्पन्न करने के लिए रेडियोआइसोटोप का उपयोग करते हैं। हाल के उपयोगों में स्टोव पंखे शामिल हैं,[12] शरीर की गर्मी से संचालित प्रकाश[13] और शरीर की गर्मी से चलने वाली स्मार्टवॉच शामिल हैं।।[14]

पेल्टियर प्रभाव

पेल्टियर प्रभाव का उपयोग एक ऐसा रेफ्रिज रेटर बनाने के लिए किया जा सकता है जो कॉम्पैक्ट हो और जिसमें कोई परिसंचारी द्रव या गतिमान भाग न हो। ऐसे रेफ्रिजरेटर उन अनुप्रयोगों में उपयोगी होते हैं जहां उनके फायदे उनकी बहुत कम दक्षता के नुकसान से अधिक होते हैं। पेल्टियर प्रभाव का उपयोग कई थर्मल साइकिल चलाने वाले द्वारा भी किया जाता है, पोलीमरेज़ चेन रिएक्शन (पीसीआर) द्वारा डीएनए को बढ़ाने के लिए प्रयोगशाला उपकरणों का उपयोग किया जाता है। पीसीआर को निर्दिष्ट तापमान के लिए नमूनों के चक्रीय ताप और शीतलन की आवश्यकता होती है। एक छोटी सी जगह में कई थर्माकोपल्स को शामिल करने से समानांतर में कई नमूनों को बढ़ाया जा सकता है।

तापमान माप

थर्मोक्यूल्स और थर्मोपाइल्स ऐसे उपकरण हैं जो दो वस्तुओं के बीच तापमान के अंतर को मापने के लिए सीबेक प्रभाव का उपयोग करते हैं।थर्मोकपल का उपयोग अक्सर उच्च तापमान को मापने के लिए किया जाता है, जो की जंक्शन के तापमान को स्थिर रखता है या इसे स्वतंत्र रूप से मापता है (थर्मोकपल)। बहुत कम तापमान अंतर के संवेदनशील मापन के लिए थर्मोपाइल्स श्रृंखला में विद्युत रूप से जुड़े कई थर्मोक्यूल्स का उपयोग करते हैं।

निराद्रिकर्ता (डीह्यूमिडिफ़ायर)

पेल्टियर निराद्रिकर्ता (डीह्यूमिडिफ़ायर) एक ठंडे हीट सिंक में नम हवा को मजबूर करके काम करते हैं। जैसे ही हवा ठंडी सतह के ऊपर से गुजरती है, यह ठंडी हो जाती है और इसमें मौजूद जलवाष्प हीट सिंक पर संघनित हो जाती है। फिर पानी पानी की टंकी में टपकता है। कमरे में वापस जाने से पहले पेल्टियर सेल के गर्म पक्ष को ठंडा करने के लिए शुष्क हवा को एक और हीट सिंक पर मजबूर किया जा सकता है।

यह भी देखें

  • बैरोकैलोरिक सामग्री
  • नर्नस्ट प्रभाव - एक थर्मोइलेक्ट्रिक घटना जब एक नमूना एक चुंबकीय क्षेत्र में विद्युत चालन की अनुमति देता है और एक तापमान ढाल एक दूसरे के लिए सामान्य (लंबवत) होता है
  • एटिंग्सहॉसन प्रभाव - एक चुंबकीय क्षेत्र में एक कंडक्टर में करंट को प्रभावित करने वाली थर्मोइलेक्ट्रिक घटना
  • पायरोइलेक्ट्रिसिटी - गर्म/ठंडा करने के बाद एक क्रिस्टल में विद्युत ध्रुवीकरण का निर्माण, थर्मोइलेक्ट्रिकिटी से अलग एक प्रभाव
  • थर्मोगैल्वेनिक सेल - विभिन्न तापमानों पर इलेक्ट्रोड के साथ गैल्वेनिक सेल से विद्युत शक्ति का उत्पादन
  • थर्मोफोटोवोल्टिक - फोटोवोल्टिक प्रभाव का उपयोग करके तापीय ऊर्जा से विद्युत शक्ति का उत्पादन

संदर्भ

  1. "The Peltier Effect and Thermoelectric Cooling". ffden-2.phys.uaf.edu.
  2. As the "figure of merit" approaches infinity, the Peltier–Seebeck effect can drive a heat engine or refrigerator at closer and closer to the Carnot efficiency. Disalvo, F. J. (1999). "Thermoelectric Cooling and Power Generation". Science. 285 (5428): 703–6. doi:10.1126/science.285.5428.703. PMID 10426986. Any device that works at the Carnot efficiency is thermodynamically reversible, a consequence of classical thermodynamics.
  3. Goupil, Christophe; Ouerdane, Henni; Zabrocki, Knud; Seifert, Wolfgang; Hinsche, Nicki F.; Müller, Eckhard (2016). "Thermodynamics and thermoelectricity". In Goupil, Christophe (ed.). Continuum Theory and Modeling of Thermoelectric Elements. New York, New York, USA: Wiley-VCH. pp. 2–3. ISBN 9783527413379.
  4. Seebeck (1822). "Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz" [Magnetic polarization of metals and ores by temperature differences]. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (in Deutsch): 265–373.
  5. See:
  6. The voltage in this case does not refer to electric potential but rather the "voltmeter" voltage , where is the Fermi level.
  7. Peltier (1834). "Nouvelles expériences sur la caloricité des courants électrique" [New experiments on the heat effects of electric currents]. Annales de Chimie et de Physique (in français). 56: 371–386.
  8. Thomson, William (1857). "4. On a Mechanical Theory of Thermo-Electric Currents". Proceedings of the Royal Society of Edinburgh. Cambridge Univ. Press. 3: 91–98. doi:10.1017/S0370164600027310. Retrieved 7 February 2022.
  9. 9.0 9.1 9.2 Leon van Dommelen (2002-02-01). "A.11 Thermoelectric effects". eng.famu.fsu.edu. Retrieved 2022-11-23.
  10. Thomson, William (1857). "On the dynamical theory of heat. Part V. Thermo-electric currents". Transactions of the Royal Society of Edinburgh. 21: 123–171. doi:10.1017/S0080456800032014. S2CID 120018011.
  11. There is a generalized second Thomson relation relating anisotropic Peltier and Seebeck coefficients with reversed magnetic field and magnetic order. See, for example, Rowe, D. M., ed. (2010). Thermoelectrics Handbook: Macro to Nano. CRC Press. ISBN 9781420038903.
  12. "TEG Module and Seebeck Effect". StoveFanReviews.com. October 2013.
  13. Goodner, Stanley (October 16, 2015). "Powered by body heat, Lumen flashlight never needs batteries". Gizmag.
  14. Signe Brewster (November 16, 2016). "Body Heat Powers This Smart Watch; The Matrix PowerWatch is a FitBit competitor that exploits the temperature difference between your skin and the air for power". MIT Technology Review. Retrieved 7 October 2019.


टिप्पणियाँ

  1. In 1794, Volta found that if a temperature difference existed between the ends of an iron rod, then it could excite spasms of a frog's leg. His apparatus consisted of two glasses of water. Dipped in each glass was a wire that was connected to one or the other hind leg of a frog. An iron rod was bent into a bow and one end was heated in boiling water. When the ends of the iron bow were dipped into the two glasses, a thermoelectric current passed through the frog's legs and caused them to twitch. See: From (Volta, 1794), p. 139: " … tuffava nell'acqua bollente un capo di tal arco per qualche mezzo minuto, … inetto de tutto ad eccitare le convulsioni dell'animale." ( … I dipped into boiling water one end of such an arc [of iron rod] for about half a minute, then I took it out and without giving it time to cool, resumed the experiment with the two glasses of cool water; and [it was] at this point that the frog in the bath convulsed; and this [happened] even two, three, four times, [upon] repeating the experiment; until, [having] cooled – by such dips [that were] more or less long and repeated, or by a longer exposure to the air – the end of the iron [rod that had been] dipped earlier into the hot water, this arc returned [to being] completely incapable of exciting convulsions of the animal.)


आगे की पढाई


बाहरी कड़ियाँ