हाइड्रोलिक ब्रेक
हाइड्रोलिक ब्रेक, गतिरोधक तंत्र (ब्रेक मैकेनिज्म) की एक व्यवस्था है जो ब्रेक द्रव का उपयोग करती है, जिसमें सामान्यतः ग्लाइकोल ईथर या डाएइथाईलीन ग्लाइकोल होता है, जो निरोधक तंत्र (कंट्रोलिंग मैकेनिज्म) से गतिरोधक तंत्र (ब्रेकिंग मैकेनिज्म) में दबाव स्थानांतरित करता है।
इतिहास
1904 के दौरान, फ्रेडरिक जॉर्ज हीथ (हीथ हाइड्रॉलिक ब्रेक कं, लिमिटेड), रेडडिच, इंग्लैंड ने एक हैंडलबार लीवर और पिस्टन का उपयोग करके एक हाइड्रोलिक (पानी/ग्लिसरीन) गतिरोधक तंत्र को साइकिल में लगाया। उन्होंने "साइकिल और मोटर्स के लिए हाइड्रोलिक एक्टीवेटेड ब्रेक में सुधार" के लिए पेटेंट GB190403651A प्राप्त किया, साथ ही बाद में बेहतर लचीले रबर हाइड्रोलिक पाइप का उपयोग किया।
1908 में, ब्रिस्टल, इंग्लैंड के अर्नेस्ट वाल्टर वेट ने एक मोटर कार में चार-पहिया हाइड्रोलिक (तेल) गतिरोधक तंत्र (ब्रेकिंग सिस्टम) तैयार किया और लगाया। उन्होंने दिसंबर 1908 में ग्रेट ब्रिटेन (GB190800241A) में, बाद में यूरोप और संयुक्त राज्य अमेरिका में इसका पेटेंट कराया और फिर 1909 के लंदन मोटर शो में इसका प्रदर्शन किया। उनके भाई, विलियम हर्बर्ट वेट ने पेटेंट (GB190921122A) में सुधार किया और दोनों को 23 ब्रिज स्ट्रीट, ब्रिस्टल के वेट पेटेंट ऑटोमोबाइल ब्रेक लिमिटेड को सौंपा गया, जब इसे 1909/10 में स्थापित किया गया था। कंपनी, जिसका लकवेल लेन, ब्रिस्टल में एक कारखाना था, उसने हिल और बोल बॉडी से सुसज्जित मेटलर्जिक चेसिस पर एक चार-पहिया द्रवचालित गतिरोधक तंत्र (हाइड्रोलिक ब्रेकिंग सिस्टम) स्थापित किया, जिसे नवंबर 1910 लंदन मोटर शो में प्रदर्शित किया गया था। हालांकि अधिक कारों में गतिरोधक तंत्र (ब्रेक सिस्टम) लगा हुआ था और कंपनी ने भारी विज्ञापन किया, लेकिन वह उस सफलता को प्राप्त किए बिना गायब हो गई जिसके वह हकदार थी।
मैल्कम लौघेड (जिन्होंने बाद में अपने नाम की स्पेलिंग बदलकर लॉकहीड कॉर्पोरेशन कर ली) ने द्रवचालित गतिरोधकका आविष्कार किया, जिसका उन्होंने 1917 में पेटेंट कराया।[2][3] लॉकहीड फ्रांस में ब्रेक फ्लुइड के लिए एक सामान्य शब्द है।
फ्रेड ड्यूसेनबर्ग ने अपनी 1914 की रेसिंग कारों में लॉकहीड कॉरपोरेशन द्रवचालित गतिरोधकका इस्तेमाल किया[4] और उनकी कार कंपनी, दुजेनबर्ग,1921 में ड्यूसेनबर्ग मॉडल पर प्रौद्योगिकी का उपयोग करने वाली पहली कंपनी थी।
स्प्रिंगफील्ड, एमए की नॉक्स ऑटोमोबाइल कंपनी 1915 से अपने सेमी-ट्रेलर ट्रकों को द्रवचालित गतिरोधकसे लैस कर रही थी।[5] प्रौद्योगिकी को ऑटोमोटिव उपयोग में आगे बढ़ाया गया और अंततः स्व-ऊर्जावान हाइड्रोलिक ड्रम गतिरोधक तंत्र (एडवर्ड बिशप बॉटन, लंदन इंग्लैंड, 28 जून, 1927) की शुरुआत हुई, जो आज भी उपयोग में है।
निर्माण
यात्री वाहनों, मोटरसाइकिलों, स्कूटरों और मोपेड के लिए द्रवचालित गतिरोधककी सबसे आम व्यवस्था में निम्नलिखित शामिल हैं:
- ब्रेक पेडल या लीवर
- एक पुशरोड (जिसे एक्ट्यूएटिंग रॉड भी कहा जाता है)
- एक प्रमुख सिलिंडर जिसमें पिस्टन असेंबली होती है (या तो एक या दो पिस्टन से बना होता है, एक रिटर्न स्प्रिंग, गैस्केट्स / ओ-रिंग्स की एक श्रृंखला और एक द्रव जलाशय)
- प्रबलित हाइड्रोलिक लाइनें
- डिस्क ब्रेक # कैलीपर्स में सामान्यतः एक या दो खोखले एल्यूमीनियम या क्रोम-प्लेटेड स्टील पिस्टन (कैलिपर पिस्टन कहा जाता है), थर्मल प्रवाहकीय ब्रेक पैड का एक सेट और एक रोटर (ब्रेक) (जिसे ब्रेक डिस्क भी कहा जाता है) या नगाड़ा से जुड़ा होता है। एक धुरी।
सिस्टम सामान्यतः ग्लाइकोल ईथर से भरा होता है | ग्लाइकोल-ईथर आधारित ब्रेक द्रव (अन्य तरल पदार्थ भी इस्तेमाल किए जा सकते हैं)।
एक समय में, यात्री वाहनों में सामान्यतः सभी चार पहियों पर ड्रम ब्रेक लगाए जाते थे। बाद में, आगे के लिए डिस्क ब्रेक और पीछे के लिए ड्रम ब्रेक का इस्तेमाल किया जाने लगा। हालांकि डिस्क ब्रेक ने बेहतर गर्मी लंपटता के लिए अधिक प्रतिरोध दिखाया है और सामान्यतः ड्रम ब्रेक की तुलना में अधिक सुरक्षित हैं। इसकारण चार पहिया डिस्क ब्रेक सबसे बुनियादी वाहनों को छोड़कर तेजी से लोकप्रिय हो गए हैं और ड्रम ब्रेक की जगह ले लिए। हालांकि, कई दोपहिया वाहनों के डिजाइन में पिछले पहिए के लिए ड्रम ब्रेक लगाना जारी है।
निम्नलिखित विवरण एक साधारण डिस्क ब्रेक की / और विन्यास के लिए शब्दावली का उपयोग करता है।
सिस्टम ऑपरेशन
एक हाइड्रोलिक गतिरोधक तंत्र में, जब ब्रेक पेडल दबाया जाता है, मास्टर सिलेंडर में पिस्टन (ओं) पर एक पुशरोड बल लगाता है, जिससे ब्रेक द्रव जलाशय से द्रव एक क्षतिपूर्ति बंदरगाह के माध्यम से एक दबाव कक्ष में प्रवाहित होता है। इसके परिणामस्वरूप पूरे हाइड्रोलिक सिस्टम के दबाव में वृद्धि होती है, हाइड्रोलिक लाइनों के माध्यम से तरल पदार्थ को एक या एक से अधिक कैलीपर्स की ओर धकेलता है जहां यह एक या एक से अधिक बैठे ओ-रिंग्स द्वारा सील किए गए एक या अधिक कैलीपर पिस्टन पर कार्य करता है (जो द्रव के रिसाव को रोकता है) ).
ब्रेक कैलीपर पिस्टन तब ब्रेक पैड पर बल लगाते हैं, उन्हें कताई रोटर के खिलाफ धकेलते हैं, और पैड और रोटर के बीच घर्षण के कारण ब्रेकिंग आघूर्ण बल (टॉर्क) उत्पन्न होता है, जिससे वाहन धीमा हो जाता है। इस घर्षण से उत्पन्न गर्मी या तो रोटर में वेंट और चैनलों के माध्यम से विलुप्त हो जाती है या पैड के माध्यम से आयोजित की जाती है, जो केवलर या सिंटर्ड ग्लास जैसे विशेष ताप-सहिष्णु सामग्री से बने होते हैं।
वैकल्पिक रूप से, एक ड्रम ब्रेक में, द्रव एक पहिया सिलेंडर में प्रवेश करता है और स्पिनिंग ड्रम के अंदर एक या दो ब्रेक शूज़ दबाता है। ब्रेक शूज़ डिस्क ब्रेक में इस्तेमाल किए जाने वाले पैड के समान गर्मी-सहिष्णु घर्षण सामग्री का उपयोग करते हैं।
ब्रेक पेडल/लीवर के बाद के रिलीज मास्टर सिलेंडर असेंबली में वसंत (एस) को मास्टर पिस्टन (ओं) को वापस स्थिति में वापस करने की अनुमति देता है। यह क्रिया पहले कैलीपर पर हाइड्रोलिक दबाव से राहत देती है, फिर कैलीपर असेंबली में ब्रेक पिस्टन को सक्शन लागू करती है, इसे वापस अपने आवास में ले जाती है और ब्रेक पैड को रोटर को छोड़ने की अनुमति देती है।
हाइड्रोलिक ब्रेकिंग सिस्टम को एक बंद सिस्टम के रूप में डिज़ाइन किया गया है: जब तक सिस्टम में कोई रिसाव नहीं होता है, तब तक ब्रेक द्रव में से कोई भी इसमें प्रवेश नहीं करता है या बाहर नहीं निकलता है, न ही उपयोग के माध्यम से तरल पदार्थ का उपभोग होता है। हालांकि, ओ-रिंग्स में दरारें या ब्रेक लाइन में पंचर से रिसाव हो सकता है। दरारें तब बन सकती हैं जब दो प्रकार के ब्रेक द्रव मिश्रित होते हैं या यदि ब्रेक द्रव पानी, शराब, एंटीफ्ऱीज़र, या किसी भी अन्य तरल पदार्थ से दूषित हो जाता है।[6]
हाइड्रोलिक गतिरोधक तंत्र का एक उदाहरण
द्रवचालित गतिरोधककिसी वस्तु ,सामान्यतः एक घूर्णन धुरी को रोकने के लिए ऊर्जा स्थानांतरित करते हैं। एक बहुत ही सरल गतिरोधक तंत्र में, सिर्फ दो सिलेंडर और एक डिस्क ब्रेक के साथ, सिलेंडर के अंदर एक पिस्टन के साथ, सिलेंडर को ट्यूब के माध्यम से जोड़ा जा सकता है। सिलेंडरों और ट्यूबों में असम्पीडित तेल भरा होता है। दो सिलेंडरों में समान मात्रा है, लेकिन अलग-अलग व्यास हैं, और इस प्रकार अलग-अलग क्रॉस-सेक्शन क्षेत्र हैं। ऑपरेटर जिस सिलेंडर का उपयोग करता है उसे मास्टर सिलेंडर कहा जाता है। कताई डिस्क ब्रेक बड़े क्रॉस-सेक्शन के साथ पिस्टन से सटे होंगे। मान लीजिए कि मास्टर सिलेंडर का व्यास गुलाम सिलेंडर का आधा व्यास है, इसलिए मास्टर सिलेंडर का क्रॉस-सेक्शन चार गुना छोटा होता है। अब, यदि मास्टर सिलेंडर में पिस्टन को 40 मिमी नीचे धकेला जाता है, तो दास पिस्टन 10 मिमी चला जाएगा। यदि मास्टर पिस्टन पर 10 न्यूटन (इकाई) (N) बल लगाया जाता है, तो स्लेव पिस्टन 40 N के बल से दबेगा।
मास्टर पिस्टन, पैडल और उत्तोलक के बीच जुड़ा लीवर डालकर इस बल को और बढ़ाया जा सकता है। यदि पेडल से धुरी की दूरी धुरी से कनेक्टेड पिस्टन की दूरी से तीन गुना है, तो पेडल पर नीचे धकेलने पर यह पेडल बल को 3 के कारक से गुणा करता है, ताकि 10N 30N हो जाए ब्रेक पैड पर मास्टर पिस्टन और 120N। इसके विपरीत, पेडल को मास्टर पिस्टन से तीन गुना आगे बढ़ना चाहिए। यदि हम पैडल को 120 मिमी नीचे धकेलते हैं, तो मास्टर पिस्टन 40 मिमी और स्लेव पिस्टन ब्रेक पैड को 10 मिमी नीचे ले जाएगा।
घटक विशिष्टता
(विशिष्ट लाइट ड्यूटी ऑटोमोटिव ब्रेकिंग सिस्टम के लिए)
एक चार पहिया कार में, संघीय मोटर वाहन सुरक्षा मानक मानक 105, 1976;[7] यह आवश्यक है कि मास्टर सिलेंडर को आंतरिक रूप से दो खंडों में विभाजित किया जाए, जिनमें से प्रत्येक एक अलग हाइड्रोलिक सर्किट पर दबाव डालता है। प्रत्येक खंड एक सर्किट को दबाव प्रदान करता है। संयोजन को अग्रानुक्रम मास्टर सिलेंडर के रूप में जाना जाता है। यात्री वाहनों में सामान्यतः या तो अग्र/पृष्ठ (फ्रंट/रियर) स्प्लिट गतिरोधक तंत्र या डायगोनल स्प्लिट गतिरोधक तंत्र होता है (मोटरसाइकिल या स्कूटर में मास्टर सिलेंडर केवल एक इकाई पर दबाव डाल सकता है, जो फ्रंट ब्रेक होगा)।
एक अग्र/पृष्ठ (फ्रंट/रियर) स्प्लिट सिस्टम फ्रंट कैलीपर पिस्टन पर दबाव डालने के लिए एक मास्टर सिलेंडर सेक्शन का उपयोग करता है और दूसरा सेक्शन रियर कैलीपर पिस्टन पर दबाव डालता है। सुरक्षा कारणों से अधिकांश देशों में अब स्प्लिट सर्किट ब्रेकिंग सिस्टम कानून द्वारा आवश्यक है; यदि एक सर्किट विफल हो जाता है, तो दूसरा सर्किट अभी भी वाहन को रोक सकता है।
1967 के उत्पादन वर्ष में अमेरिकी मोटर्स ऑटोमोबाइल पर प्रांरम्भ में विकर्ण विभाजन प्रणाली का उपयोग किया गया था। दाएँ आगे और पीछे के बाएँ एक एक्चुएटिंग पिस्टन द्वारा परोसा जाता है, जबकि बाएँ अग्र और दाएँ रियर को विशेष रूप से, एक दूसरे एक्चुएटिंग पिस्टन द्वारा परोसा जाता है (दोनों पिस्टन एक फुट पेडल से अपनी संबंधित युग्मित रेखाओं पर दबाव डालते हैं)। यदि कोई सर्किट विफल हो जाता है, तो दूसरा, कम से कम एक फ्रंट व्हील ब्रेकिंग के साथ (अग्र ब्रेक अधिकांश ब्रेकिंग बल प्रदान करते हैं, वजन हस्तांतरण के कारण), यांत्रिक रूप से क्षतिग्रस्त वाहन को रोकने के लिए बरकरार रहता है। 1970 के दशक तक, संयुक्त राज्य अमेरिका में बेचे जाने वाले ऑटोमोबाइल में तिरछे विभाजन सिस्टम आम हो गए थे। सिस्टम विफलता के दौरान बेहतर नियंत्रण और स्थिरता बनाए रखने के लिए इस प्रणाली को फ्रंट-व्हील ड्राइव कारों के निलंबन डिजाइन के साथ विकसित किया गया था।
मेरी 1967 से वोल्वो 140 श्रृंखला पर एक त्रिकोणीय विभाजन प्रणाली प्रांरम्भ की गई थी, जहां फ्रंट डिस्क ब्रेक में चार सिलेंडर की व्यवस्था होती है, और दोनों सर्किट प्रत्येक अग्र व्हील पर और पीछे के पहियों में से एक पर कार्य करते हैं। व्यवस्था को बाद की मॉडल श्रृंखला 200 और 700 के माध्यम से रखा गया था।
गतिरोधक तंत्र के प्रदर्शन पर मास्टर सिलेंडर के व्यास और लंबाई का महत्वपूर्ण प्रभाव पड़ता है। एक बड़ा व्यास मास्टर सिलेंडर कैलीपर पिस्टन को अधिक हाइड्रोलिक द्रव प्रदान करता है, फिर भी किसी दिए गए मंदी को प्राप्त करने के लिए अधिक ब्रेक पेडल बल और कम ब्रेक पेडल स्ट्रोक की आवश्यकता होती है। एक छोटे व्यास के मास्टर सिलेंडर का विपरीत प्रभाव होता है।
एक मास्टर सिलेंडर कैलीपर पिस्टन या दूसरे के एक सेट में तरल पदार्थ की मात्रा में वृद्धि की अनुमति देने के लिए दो वर्गों के बीच अलग-अलग व्यास का उपयोग कर सकता है और इसे त्वरित टेक-अप एम / सी कहा जाता है। ईंधन की बचत को बढ़ाने के लिए इनका उपयोग कम ड्रैग फ्रंट कैलीपर्स के साथ किया जाता है।
भारी ब्रेकिंग के तहत पिछले ब्रेक पर दबाव कम करने के लिए एक आनुपातिक वाल्व का उपयोग किया जा सकता है। यह पीछे के ब्रेक को लॉक करने की संभावना को कम करने के लिए रियर ब्रेकिंग को सीमित करता है, और स्पिन की संभावना को बहुत कम करता है।
पावर ब्रेक
वैक्यूम बूस्टर या खाली सर्वर का उपयोग अधिकांश आधुनिक हाइड्रोलिक गतिरोधक तंत्र में किया जाता है जिसमें चार पहिए होते हैं, वैक्यूम बूस्टर मास्टर सिलेंडर और ब्रेक पेडल के बीच जुड़ा होता है और ड्राइवर द्वारा लगाए गए ब्रेकिंग बल को गुणा करता है। इन इकाइयों में पूरे केंद्र में एक जंगम रबर डायाफ्राम (यांत्रिक उपकरण) के साथ एक खोखला आवास होता है, जिससे दो कक्ष बनते हैं। जब थ्रॉटल बॉडी के कम दबाव वाले हिस्से या इंजन के इनटेक मैनिफोल्ड से जुड़ा होता है, तो यूनिट के दोनों कक्षों में दबाव कम हो जाता है। दोनों कक्षों में कम दबाव द्वारा बनाया गया संतुलन ब्रेक पेडल के दबे होने तक डायाफ्राम को हिलने से रोकता है। ब्रेक पेडल लागू होने तक रिटर्न स्प्रिंग डायाफ्राम को शुरुआती स्थिति में रखता है। जब ब्रेक पेडल लगाया जाता है, आंदोलन एक वायु वाल्व खोलता है जो वायुमंडलीय दबाव हवा को बूस्टर के एक कक्ष में जाने देता है। चूंकि दबाव एक कक्ष में अधिक हो जाता है, डायाफ्राम डायाफ्राम के क्षेत्र और अंतर दबाव द्वारा बनाए गए बल के साथ निचले दबाव वाले कक्ष की ओर बढ़ता है। यह बल, चालक के पैर के बल के अतिरिक्त, मास्टर सिलेंडर पिस्टन पर धकेलता है। यहाँ अपेक्षाकृत छोटे व्यास की बूस्टर इकाई की आवश्यकता होती है जो की 50% मैनिफोल्ड वैक्यूम के लिए, लगभग 1500 एन (200 एन) की सहायक शक्ति 0.03 वर्ग मीटर के क्षेत्र के साथ 20 सेमी डायाफ्राम द्वारा निर्मित होती है। जब कक्ष के दोनों किनारों पर बल संतुलन पर पहुंचेंगे तो डायाफ्राम हिलना बंद कर देगा। यह या तो वायु वाल्व के बंद होने (पेडल के रुकने के कारण) या रन आउट होने के कारण हो सकता है। रन आउट तब होता है जब एक कक्ष में दबाव वायुमंडलीय दबाव तक पहुंच जाता है और अब स्थिर विभेदक दबाव द्वारा कोई अतिरिक्त बल उत्पन्न नहीं किया जा सकता है। रन आउट बिंदु तक पहुंचने के बाद, मास्टर सिलेंडर पिस्टन को आगे लागू करने के लिए केवल चालक के पैर बल का उपयोग किया जा सकता है।
मास्टर सिलेंडर से द्रव का दबाव स्टील ब्रेक ट्यूबों की एक जोड़ी के माध्यम से दबाव अंतर वाल्व तक जाता है, जिसे कभी-कभी ब्रेक विफलता वाल्व के रूप में संदर्भित किया जाता है, जो दो कार्य करता है: यह दो प्रणालियों के बीच दबाव को बराबर करता है, और यह एक चेतावनी प्रदान करता है यदि कोई सिस्टम दबाव खो देता है। प्रेशर डिफरेंशियल वाल्व में उनके बीच एक पिस्टन के साथ दो कक्ष होते हैं (जिससे हाइड्रोलिक लाइनें जुड़ी होती हैं)। जब किसी भी लाइन में दबाव संतुलित होता है, तो पिस्टन हिलता नहीं है। यदि एक तरफ का दबाव कम हो जाता है, तो दूसरी तरफ का दबाव पिस्टन को घुमाता है। जब पिस्टन इकाई के केंद्र में एक साधारण विद्युत जांच के साथ संपर्क करता है, तो एक सर्किट पूरा हो जाता है और ऑपरेटर को गतिरोधक तंत्र में विफलता की चेतावनी दी जाती है।
प्रेशर डिफरेंशियल वॉल्व से, ब्रेक टयूबिंग, पहियों पर ब्रेक यूनिट्स पर दबाव डालता है। चूँकि पहिए ऑटोमोबाइल से एक निश्चित संबंध नहीं रखते हैं, इसलिए वाहन के फ्रेम पर स्टील लाइन के अंत से पहिया पर कैलीपर तक द्रवचालित गतिरोधकनली का उपयोग करना आवश्यक है। फ्लेक्स के लिए स्टील ब्रेक टयूबिंग की अनुमति देने से धातु की थकान और अंततः ब्रेक विफलता होती है। एक सामान्य उन्नयन मानक रबर होसेस को एक सेट के साथ बदलना है जो बाहरी रूप से लट वाले स्टेनलेस-स्टील तारों के साथ प्रबलित होते हैं। ब्रेडेड तारों का दबाव में नगण्य विस्तार होता है और किसी ब्रेकिंग प्रयास के लिए कम पेडल यात्रा के साथ ब्रेक पेडल को एक मजबूत अनुभव दे सकता है।
शब्द 'पावर हाइड्रॉलिक ब्रेक' बहुत भिन्न सिद्धांतों पर चलने वाली प्रणालियों को भी संदर्भित कर सकता है जहां एक इंजन चालित पंप एक केंद्रीय संचायक में निरंतर हाइड्रोलिक दबाव बनाए रखता है। ड्राइवर का ब्रेक पैडल केवल पिस्टन को दबाकर मास्टर सिलेंडर में दबाव बनाने के बजाय पहियों पर ब्रेक इकाइयों में दबाव डालने के लिए वाल्व को नियंत्रित करता है। ब्रेक का यह रूप एक एयर ब्रेक (सड़क वाहन) प्रणाली के अनुरूप है, लेकिन हवा के बजाय काम करने वाले माध्यम के रूप में हाइड्रोलिक द्रव के साथ। हालाँकि, एयर ब्रेक पर सिस्टम w से हवा निकाली जाती हैजब ब्रेक जारी किए जाते हैं और संपीड़ित हवा के भंडार को फिर से भर दिया जाना चाहिए। एक पावर हाइड्रॉलिक गतिरोधक तंत्र पर, कम दबाव पर तरल ब्रेक यूनिट से पहियों पर इंजन चालित पंप में वापस आ जाता है, क्योंकि ब्रेक जारी होते हैं, इसलिए केंद्रीय दबाव संचायक लगभग तुरंत फिर से दबाव डाला जाता है। यह पावर हाइड्रोलिक सिस्टम को उन वाहनों के लिए अत्यधिक उपयुक्त बनाता है जिन्हें बार-बार रुकना और प्रांरम्भ करना चाहिए (जैसे शहरों में बसें)। लगातार परिसंचारी द्रव ठंड वाले हिस्सों और एकत्रित जल वाष्प के साथ समस्याओं को भी दूर करता है जो ठंडी जलवायु में वायु प्रणालियों को प्रभावित कर सकता है। एईसी रूटमास्टर बस पावर द्रवचालित गतिरोधकका एक प्रसिद्ध अनुप्रयोग है और जलविद्युत निलंबन वाली सिट्रोएन कारों की क्रमिक पीढ़ियों ने भी पारंपरिक ऑटोमोटिव गतिरोधक तंत्र के बजाय पूरी तरह से संचालित द्रवचालित गतिरोधकका उपयोग किया है। अधिकांश बड़े विमान पावर हाइड्रॉलिक व्हील ब्रेक का भी उपयोग करते हैं, क्योंकि वे अत्यधिक मात्रा में ब्रेकिंग बल प्रदान कर सकते हैं; व्हील ब्रेक एक या एक से अधिक एयरक्राफ्ट हाइड्रोलिक तंत्र से जुड़े होते हैं| विमान के मुख्य हाइड्रोलिक सिस्टम, एक हाइड्रोलिक संचायक के अतिरिक्त के साथ हाइड्रोलिक विफलता की स्थिति में भी विमान को ब्रेक लगाने की अनुमति देता है।
विशेष विचार
एयर गतिरोधक तंत्र भारी हैं, और हवा कंप्रेसर और जलाशय टैंकों की आवश्यकता होती है। हाइड्रोलिक सिस्टम छोटे और कम खर्चीले होते हैं।
हाइड्रोलिक तरल पदार्थ गैर-संपीड़ित होना चाहिए। एयर ब्रेक (सड़क वाहन) के विपरीत, जहां एक वाल्व खोला जाता है और दबाव पर्याप्त रूप से बढ़ने तक लाइनों और ब्रेक कक्षों में हवा बहती है, हाइड्रोलिक सिस्टम सिस्टम के माध्यम से तरल पदार्थ को मजबूर करने के लिए पिस्टन के एक स्ट्रोक पर भरोसा करते हैं। यदि सिस्टम में कोई वाष्प पेश किया जाता है तो यह संकुचित हो जाएगा, और ब्रेक को सक्रिय करने के लिए दबाव पर्याप्त रूप से नहीं बढ़ सकता है।
हाइड्रोलिक ब्रेकिंग सिस्टम को कभी-कभी ऑपरेशन के दौरान उच्च तापमान के अधीन किया जाता है, जैसे कि खड़ी ग्रेड से उतरते समय। इस कारण से, हाइड्रोलिक द्रव को उच्च तापमान पर वाष्पीकरण का विरोध करना चाहिए।
पानी गर्मी से आसानी से वाष्पीकृत हो जाता है और सिस्टम के धातु भागों को खराब कर सकता है। पानी जो ब्रेक लाइनों में प्रवेश करता है, यहां तक कि थोड़ी मात्रा में, अधिकांश सामान्य ब्रेक तरल पदार्थ (यानी, जो हीड्रोस्कोपिक हैं) के साथ प्रतिक्रिया करेगा[8][9]) निक्षेपों के निर्माण का कारण बनता है जो ब्रेक लाइनों और जलाशय को रोक सकता है। किसी भी गतिरोधक तंत्र को पानी के संपर्क में आने से पूरी तरह से सील करना लगभग असंभव है, जिसका अर्थ है कि ब्रेक द्रव को नियमित रूप से बदलना आवश्यक है ताकि यह सुनिश्चित किया जा सके कि सिस्टम पानी के साथ प्रतिक्रियाओं के कारण होने वाली जमा राशि से अधिक नहीं हो रहा है। हल्के तेल को कभी-कभी विशेष रूप से हाइड्रोलिक तरल पदार्थ के रूप में उपयोग किया जाता है क्योंकि वे पानी के साथ प्रतिक्रिया नहीं करते हैं: तेल पानी को विस्थापित करता है, जंग के खिलाफ प्लास्टिक के हिस्सों की रक्षा करता है, और वाष्पीकरण से पहले बहुत अधिक तापमान सहन कर सकता है, लेकिन इसमें अन्य कमियां बनाम पारंपरिक हाइड्रोलिक तरल पदार्थ हैं। सिलिकॉन तरल पदार्थ अधिक महंगे विकल्प हैं।
ब्रेक फीका एक ऐसी स्थिति है जो अत्यधिक गरम होने के कारण होती है जिसमें ब्रेकिंग प्रभावशीलता कम हो जाती है, और खो सकती है। यह कई कारणों से हो सकता है। घूमने वाले हिस्से को जोड़ने वाले पैड ज़्यादा गरम हो सकते हैं और चमक सकते हैं, इतने चिकने और सख्त हो जाते हैं कि वे वाहन को धीमा करने के लिए पर्याप्त रूप से पकड़ नहीं पाते हैं। इसके अलावा, अत्यधिक तापमान या थर्मल विरूपण के तहत हाइड्रोलिक तरल पदार्थ के वाष्पीकरण के कारण लाइनिंग अपना आकार बदल सकती है और घूर्णन भाग के कम सतह क्षेत्र को संलग्न कर सकती है। थर्मल विरूपण भी धातु के घटकों के आकार में स्थायी परिवर्तन का कारण बन सकता है, जिसके परिणामस्वरूप ब्रेकिंग क्षमता में कमी आती है जिसके लिए प्रभावित भागों को बदलने की आवश्यकता होती है।
यह भी देखें
संदर्भ
- ↑ Automobile Engineering, Vol. II., p. 183. American Technical Society, Chicago, 1919
- ↑ Loughhead, Malcolm, "Braking apparatus," U.S. Patent no. 1,249,143 (filed: 1917 January 22 ; issued: 1917 December 4).
- ↑ Csere, Csaba (January 1988), "10 Best Engineering Breakthroughs", Car and Driver, vol. 33, no. 7, p. 61
- ↑ "Stopping Power Put Duesenbergs Forever in Industry's Winner's Circle". 13 December 2005.
- ↑ "Motor Age". 1915.
- ↑ Sean Bennett (3 November 2006). Modern Diesel Technology: Brakes, Suspension & Steering. Cengage Learning. p. 97. ISBN 978-1-4180-1372-1.
- ↑ "Federal Motor Vehicle Safety Standards and Regulations". www.nhtsa.gov. Archived from the original on 2014-05-29. Retrieved 2016-10-01.
- ↑ "CDC - NIOSH Pocket Guide to Chemical Hazards - Ethylene glycol". www.cdc.gov. Retrieved 11 April 2018.
- ↑ "CDC - NIOSH Pocket Guide to Chemical Hazards - Propylene glycol monomethyl ether". www.cdc.gov. Retrieved 11 April 2018.
बाहरी कड़ियाँ
- Nice, Karim (16 August 2000). "How Brakes Work". How Stuff Works. Retrieved 18 June 2010.
- "Hydraulic Brakes". Integrated Publishing. Archived from the original on 30 March 2010. Retrieved 18 June 2010.
- Erjavec, Jack (2004). Automotive Technology: A Systems Approach, Delmar Cengage Learning. ISBN 1-4018-4831-1
- Allan and Malcolm Loughead (Lockheed) Their Early Lives in the Santa Cruz Mountains including the invention of the hydraulic brake.
पेटेंट
- US 2746575 Disc brakes for road and other vehicles. किंचिन 1956-05-22
- US 2591793 Device for adjusting the return travel of fluid actuated means. डुबोइस 1952-04-08
- US 2544849 Hydraulic brake automatic adjuster. मार्टिन 1951-03-13
- US 2485032 Brake apparatus. ब्रायंट 1949-10-08
- US 2466990 Single disk brake. जॉनसन वेड सी, ट्रिशमैन हैरी ए, स्ट्रैटन एडगर एच। 1949-04-12
- US 2416091 Fluid pressure control mechanism. फिच 1947-02-12
- US 2405219 Disk brake. लैम्बर्ट होमर टी 1946-08-06
- US 2375855 Multiple disk brake. लैम्बर्ट होमर टी 1945-05-15
- US 2366093 Brake. फोर्ब्स जोसेफ ए। 1944-12-26
- US 2140752 Brake. ब्री 1938-12-20 पर
- US 2084216 V-type brake for motor vehicles. पोएज रॉबर्ट ए. और पोएज मार्लिन जेड. 1937-06-15
- US 2028488 Brake. एवरी विलियम लीसेस्टर 1936-02-21
- US 1959049 Friction Brake. बुउस नील्स पीटर वल्देमार 1934-05-15
- US 1954534 Brake. नॉर्टन रेमंड जे 1934-04-10
- US 1721370 Brake for use on vehicles. बॉटन एडवर्ड बिशप 1929-07-16
- DE 695921 Antriebsvorrichtung mit hydraulischem Gestaenge.... बोर्गवार कार्ल फ्रेडरिक विल्हेम 1940-09-06
- GB 377478 Improvements in wheel cylinders for hydraulic brakes. हॉल फ्रेडरिक हेरोल्ड 1932-07-28
- GB 365069 Improvements in control gear for hydraulically operated devices and particularly brakes for vehicles. रूबरी जॉन मेरेडिथ 1932-01-06
श्रेणी:वाहन ब्रेकिंग प्रौद्योगिकियां
श्रेणी:अमेरिकी आविष्कार