द्रव बेयरिंग

From Vigyanwiki
Revision as of 12:01, 26 January 2023 by alpha>Ayush Mishra

फ्लुइड बियरिंग वे बियरिंग होते हैं जिनमें भार को असर वाली सतहों के बीच तेजी से गतिमान दाबित तरल या गैस की एक पतली परत द्वारा सहारा दिया जाता है।[1] चूंकि चलती भागों के बीच कोई संपर्क नहीं है, कोई फिसलने वाला घर्षण नहीं है, जिससे द्रव बीयरिंगों में कई अन्य प्रकार के बीयरिंगों की तुलना में कम घर्षण, पहनने और कंपन होता है। इस प्रकार, यदि सही ढंग से संचालित किया जाए तो कुछ द्रव बीयरिंगों के लिए लगभग शून्य पहनना संभव है।[1]

उन्हें मोटे तौर पर दो प्रकारों में वर्गीकृत किया जा सकता है: द्रव गतिशील बीयरिंग (हाइड्रोडाइनमिक बीयरिंग के रूप में भी जाना जाता है) और हाइड्रोस्टेटिक बीयरिंगहाइड्रोस्टेटिक बीयरिंग बाहरी रूप से दबाव वाले द्रव बीयरिंग होते हैं, जहां द्रव आमतौर पर तेल, पानी या हवा होता है, और एक पंप द्वारा दबाव डाला जाता है। हाइड्रोडाइनमिक बियरिंग्स जर्नल की उच्च गति (द्रव पर आराम करने वाले शाफ्ट का हिस्सा) पर निर्भर करते हैं ताकि चेहरे के बीच एक कील में तरल पदार्थ पर दबाव डाला जा सके। द्रव बीयरिंग अक्सर उच्च भार, उच्च गति या उच्च परिशुद्धता अनुप्रयोगों में उपयोग किए जाते हैं जहां साधारण बॉल बियरिंग का जीवन छोटा होता है या उच्च शोर और कंपन होता है। लागत कम करने के लिए भी इनका तेजी से उपयोग किया जाता है। उदाहरण के लिए, हार्ड डिस्क ड्राइव मोटर फ्लुइड बेयरिंग उनके द्वारा बदले जाने वाले बॉल बेयरिंग की तुलना में शांत और सस्ते दोनों हैं। अनुप्रयोग बहुत बहुमुखी हैं और यहां तक ​​कि लीडस्क्रू जैसे जटिल ज्यामिति में भी इसका उपयोग किया जा सकता है।[2]

फ्लुइड बेयरिंग का आविष्कार फ्रांसीसी सिविल इंजीनियर एलडी गिरार्ड द्वारा किया गया हो सकता है, जिन्होंने 1852 में रेलवे प्रोपल्शन की एक प्रणाली का प्रस्ताव रखा था जिसमें पानी से भरे हाइड्रोलिक बियरिंग्स शामिल थे।[3][1]

संचालन

एक हाइड्रोस्टेटिक बेयरिंग में दो सतहें होती हैं, जिनमें से एक में एक प्रतिबंधात्मक छिद्र के माध्यम से द्रव को मजबूर किया जाता है, ताकि यह सतहों के बीच की जगह को भर दे ताकि यह उन्हें अलग रखे। यदि सतहों के बीच की खाई कम हो जाती है तो असर के किनारों के माध्यम से बहिर्वाह कम हो जाता है और दबाव बढ़ जाता है, सतहों को फिर से अलग कर देता है, अंतराल का उत्कृष्ट नियंत्रण देता है और कम घर्षण देता है।

द्रव बियरिंग्स नॉन-कॉन्टैक्ट बियरिंग होते हैं जो गतिमान बियरिंग चेहरों के बीच तेजी से गतिमान दाबित तरल या गैस द्रव की एक पतली परत का उपयोग करते हैं, जो आमतौर पर घूमने वाले शाफ्ट के चारों ओर या नीचे सील होते हैं।[1] चलने वाले हिस्से संपर्क में नहीं आते हैं, इसलिए कोई स्लाइडिंग घर्षण नहीं होता है; भार बल केवल गतिमान द्रव के दबाव द्वारा समर्थित होता है। द्रव को असर में लाने के दो मुख्य तरीके हैं:

  • द्रव स्थिर, हाइड्रोस्टेटिक और कई गैस या वायु बीयरिंगों में, द्रव को छिद्र के माध्यम से या झरझरा सामग्री के माध्यम से पंप किया जाता है। इस तरह के बीयरिंगों को शाफ्ट स्थिति नियंत्रण प्रणाली से सुसज्जित किया जाना चाहिए, जो रोटेशन की गति और शाफ्ट भार के अनुसार द्रव के दबाव और खपत को समायोजित करता है।[4]
  • द्रव-गतिशील बीयरिंगों में, असर रोटेशन तरल पदार्थ को असर की आंतरिक सतह पर चूसता है, जिससे शाफ्ट के नीचे या उसके चारों ओर एक स्नेहन कील बनती है।

हीड्रास्टाटिक बीयरिंग एक बाहरी पंप पर निर्भर करते हैं। उस पंप द्वारा आवश्यक शक्ति सिस्टम ऊर्जा हानि में योगदान देती है, जैसे घर्षण घर्षण अन्यथा होता है। बेहतर सील रिसाव दर और पम्पिंग शक्ति को कम कर सकती हैं, लेकिन घर्षण बढ़ा सकती हैं।

हाइड्रोडायनामिक बीयरिंग असर में तरल पदार्थ को चूसने के लिए असर गति पर भरोसा करते हैं, और डिजाइन से कम गति पर या शुरू होने और रुकने के दौरान उच्च घर्षण और कम जीवन हो सकता है। हाइड्रोडायनामिक असर को नुकसान से बचाने के लिए स्टार्टअप और शटडाउन के लिए एक बाहरी पंप या द्वितीयक असर का उपयोग किया जा सकता है। एक द्वितीयक बियरिंग में उच्च घर्षण और कम परिचालन जीवन हो सकता है, लेकिन यदि बियरिंग शुरू होती है और रुकती है तो अच्छा समग्र सेवा जीवन होता है।

हाइड्रोडायनामिक स्नेहन

हाइड्रोडायनामिक (एचडी) स्नेहन, जिसे द्रव-फिल्म स्नेहन के रूप में भी जाना जाता है, में आवश्यक तत्व होते हैं:

  1. एक स्नेहक, जो एक चिपचिपा द्रव होना चाहिए।
  2. बीयरिंग और जर्नल के बीच द्रव का हाइड्रोडायनामिक प्रवाह व्यवहार।
  3. जिन सतहों के बीच द्रव फिल्में चलती हैं, उन्हें अभिसारी होना चाहिए।

हाइड्रोडायनामिक (पूर्ण फिल्म) स्नेहन तब प्राप्त होता है जब स्नेहक की एक चिपकने वाली फिल्म द्वारा दो संभोग सतहों को पूरी तरह से अलग किया जाता है।

इस प्रकार फिल्म की मोटाई सतहों की संयुक्त खुरदरापन से अधिक हो जाती है। सीमा-परत स्नेहन की तुलना में घर्षण का गुणांक कम है। हाइड्रोडायनामिक स्नेहन चलती भागों में पहनने से रोकता है, और धातु से धातु के संपर्क को रोकता है।

हाइड्रोडायनामिक स्नेहन के लिए पतली, अभिसरण द्रव फिल्मों की आवश्यकता होती है। ये तरल पदार्थ तरल या गैस हो सकते हैं, जब तक वे चिपचिपाहट प्रदर्शित करते हैं। कंप्यूटर पंखे और स्पिनिंग डिवाइस में, हार्ड डिस्क ड्राइव की तरह, सिर हाइड्रोडायनामिक स्नेहन द्वारा समर्थित होते हैं जिसमें द्रव फिल्म वातावरण होती है।

इन फिल्मों का पैमाना माइक्रोमीटर के क्रम में होता है। उनका अभिसरण उन सतहों पर सामान्य दबाव बनाता है जिनसे वे संपर्क करते हैं, उन्हें अलग करने के लिए मजबूर करते हैं।

मीबा हाइड्रोडायनामिक टिल्टिंग पैड जर्नल बियरिंग

तीन प्रकार के बीयरिंगों में शामिल हैं:

  • स्व-अभिनय: फिल्म सापेक्ष गति के कारण मौजूद होती है। उदा. सर्पिल नाली बीयरिंग।
  • निचोड़ फिल्म: सापेक्ष सामान्य गति के कारण फिल्म मौजूद है।
  • बाहरी दबाव: बाहरी दबाव के कारण फिल्म मौजूद है।

वैचारिक रूप से बीयरिंगों को दो प्रमुख ज्यामितीय वर्गों के रूप में माना जा सकता है: बियरिंग-जर्नल (एंटी-घर्षण), और प्लेन-स्लाइडर (घर्षण)।

रेनॉल्ड्स समीकरण का उपयोग तरल पदार्थों के लिए शासी सिद्धांतों को प्राप्त करने के लिए किया जा सकता है। ध्यान दें कि जब गैसों का उपयोग किया जाता है, तो उनकी व्युत्पत्ति अधिक शामिल होती है।

पतली फिल्मों के बारे में सोचा जा सकता है कि उन पर दबाव और चिपचिपी ताकतें काम कर रही हैं। चूँकि वेग में अंतर होता है इसलिए सतह कर्षण सदिशों में अंतर होगा। बड़े पैमाने पर संरक्षण के कारण हम दबाव में वृद्धि भी मान सकते हैं, जिससे शरीर की ताकत अलग हो जाती है।

  • हाइड्रोडायनामिक स्नेहन - विशेषताएं:
    1. लोड बढ़ने पर न्यूनतम मोटाई के बिंदु पर द्रव फिल्म मोटाई में घट जाती है
    2. भार के कारण फिल्म की मोटाई घटने से द्रव द्रव्यमान के भीतर दबाव बढ़ जाता है
    3. द्रव द्रव्यमान के भीतर दबाव न्यूनतम निकासी के करीब पहुंचने वाले किसी बिंदु पर सबसे बड़ा होता है और अधिकतम निकासी के बिंदु पर सबसे कम होता है (विचलन के कारण)
    4. दबाव बढ़ने पर चिपचिपाहट बढ़ जाती है (कतरनी के लिए अधिक प्रतिरोध)
    5. अधिक चिपचिपे तरल पदार्थों के उपयोग से न्यूनतम निकासी के बिंदु पर फिल्म की मोटाई बढ़ जाती है
    6. समान भार के साथ द्रव की श्यानता बढ़ने पर दाब बढ़ता है
    7. दिए गए भार और द्रव के साथ, गति बढ़ने पर फिल्म की मोटाई बढ़ेगी
    8. स्नेहक की चिपचिपाहट अधिक होने पर द्रव का घर्षण बढ़ जाता है
  • हाइड्रोडायनामिक स्थिति - द्रव वेग:
    1. द्रव का वेग जर्नल या राइडर के वेग पर निर्भर करता है
    2. आपेक्षिक वेग में वृद्धि जर्नल बियरिंग केंद्रों की विलक्षणता में कमी की ओर जाता है
    3. यह अधिक न्यूनतम फिल्म मोटाई के साथ है
  • हाइड्रोडायनामिक स्थिति - भार:
    1. लोड बढ़ने से फिल्म की न्यूनतम मोटाई घट जाती है
    2. फिल्म द्रव्यमान के भीतर एक प्रतिकारी बल प्रदान करने के लिए दबाव भी बढ़ाता है
    3. दबाव सभी दिशाओं में कार्य करता है, इसलिए यह असर के सिरों से तेल को निचोड़ता है
    4. दबाव बढ़ने से द्रव की चिपचिपाहट बढ़ जाती है

असर विशेषता संख्या: चूंकि चिपचिपाहट, वेग और भार एक हाइड्रोडायनामिक स्थिति की विशेषताओं को निर्धारित करते हैं, फिल्म की मोटाई पर इनके प्रभावों के आधार पर एक असर विशेषता संख्या विकसित की गई थी।

वेग में वृद्धि न्यूनतम बढ़ जाती है। फिल्म की मोटाई
गाढ़ेपन में वृद्धि न्यूनतम को बढ़ाती है। फिल्म की मोटाई
लोड में वृद्धि न्यूनतम घट जाती है। फिल्म की मोटाई

इसलिए,

श्यानता × वेग/इकाई भार = एक आयाम रहित संख्या = C

C को 'असर विशेषता संख्या' के रूप में जाना जाता है।

C का मान कुछ हद तक इस बात का संकेत देता है कि हाइड्रोडायनामिक स्नेहन होगा या नहीं

संचालन के लक्षण

समान लोड रेटिंग वाले अन्य बीयरिंगों की तुलना में द्रव बीयरिंग अपेक्षाकृत सस्ते हो सकते हैं। बियरिंग काम कर रहे तरल पदार्थ में रखने के लिए मुहरों के साथ दो चिकनी सतहों के रूप में सरल हो सकती है। इसके विपरीत, एक पारंपरिक रोलिंग-एलिमेंट बेयरिंग को जटिल आकार वाले कई उच्च-सटीक रोलर्स की आवश्यकता हो सकती है। हाइड्रोस्टेटिक और कई गैस बीयरिंगों में बाहरी पंपों की जटिलता और खर्च होता है।

अधिकांश द्रव बीयरिंगों को बहुत कम या कोई रखरखाव की आवश्यकता नहीं होती है, और लगभग असीमित जीवन होता है। पारंपरिक रोलिंग-तत्व बियरिंग्स का जीवन आमतौर पर कम होता है और नियमित रखरखाव की आवश्यकता होती है। पंप किए गए हाइड्रोस्टैटिक और एरोस्टैटिक (गैस) बियरिंग डिज़ाइन कम घर्षण को शून्य गति तक बनाए रखते हैं और स्टार्ट/स्टॉप वियर की आवश्यकता नहीं होती है, बशर्ते पंप विफल न हो।

द्रव बीयरिंगों में आमतौर पर बहुत कम घर्षण होता है - यांत्रिक बीयरिंगों की तुलना में कहीं बेहतर। द्रव असर में घर्षण का एक स्रोत द्रव की चिपचिपाहट है जो गतिशील घर्षण की ओर जाता है जो गति के साथ बढ़ता है, लेकिन स्थैतिक घर्षण आमतौर पर नगण्य होता है। हाइड्रोस्टेटिक गैस बीयरिंग बहुत तेज गति पर भी सबसे कम घर्षण बीयरिंगों में से हैं। हालांकि, कम द्रव चिपचिपाहट का मतलब आमतौर पर असर वाली सतहों से तरल पदार्थ का तेजी से रिसाव होता है, इस प्रकार पंपों के लिए बढ़ी हुई शक्ति या सील से घर्षण की आवश्यकता होती है।

जब एक रोलर या बॉल को भारी भरकम लोड किया जाता है, तो फ्लुइड बियरिंग्स में क्लीयरेंस होते हैं जो मैकेनिकल बियरिंग्स की तुलना में लोड के तहत कम बदलते हैं ("कड़े" होते हैं)। ऐसा लग सकता है कि बियरिंग स्टिफनेस, जैसा कि अधिकतम डिजाइन लोड के साथ होता है, औसत फ्लुइड प्रेशर और बियरिंग सरफेस एरिया का एक साधारण कार्य होगा। व्यवहार में, जब असर वाली सतहों को एक साथ दबाया जाता है, तो द्रव का बहिर्वाह संकुचित होता है। यह असर वाले चेहरों के बीच द्रव के दबाव को काफी बढ़ा देता है। चूंकि द्रव धारण करने वाले चेहरे रोलिंग सतहों की तुलना में तुलनात्मक रूप से बड़े हो सकते हैं, यहां तक ​​कि छोटे द्रव दबाव के अंतर भी बड़े बहाल करने वाले बलों का कारण बनते हैं, जो अंतराल को बनाए रखते हैं।

हालांकि, डिस्क ड्राइव जैसे हल्के भार वाले बीयरिंगों में, सामान्य गेंद असर कठोरता ~ 10 ^ 7 एमएन / एम है। तुलनीय द्रव बीयरिंगों में ~ 10^6 MN/m की कठोरता होती है।[citation needed] इस वजह से, कुछ द्रव बीयरिंग, विशेष रूप से हाइड्रोस्टेटिक बीयरिंग, कठोरता को बढ़ाने के लिए असर को प्री-लोड करने के लिए जानबूझकर डिज़ाइन किए गए हैं।

द्रव बीयरिंग अक्सर स्वाभाविक रूप से महत्वपूर्ण भिगोना जोड़ते हैं। यह जर्नल बेयरिंग (कभी-कभी शंक्वाकार या रॉकिंग मोड कहा जाता है) की जाइरोस्कोपिक आवृत्तियों पर प्रतिध्वनि को कम करने में मदद करता है।

एक यांत्रिक असर बनाना बहुत मुश्किल है जो परमाणु रूप से चिकना और गोल हो; और यांत्रिक बीयरिंग केन्द्रापसारक बल के कारण उच्च गति के संचालन में ख़राब हो जाते हैं। इसके विपरीत, मामूली खामियों और मामूली विकृतियों के लिए द्रव बीयरिंग स्वयं सही होते हैं।

रोलिंग-एलिमेंट बियरिंग की तुलना में द्रव बियरिंग्स आमतौर पर शांत और चिकनी (अधिक सुसंगत घर्षण) होती हैं। उदाहरण के लिए, द्रव बीयरिंग के साथ निर्मित हार्ड डिस्क ड्राइव में 20-24 डेसिबल के क्रम पर बीयरिंग/मोटर्स के लिए शोर रेटिंग होती है, जो शांत कमरे के पृष्ठभूमि शोर से थोड़ी अधिक होती है। रोलिंग-एलिमेंट बियरिंग पर आधारित ड्राइव आमतौर पर कम से कम 4 dB नॉइज़ियर होते हैं।

बॉल या रोलिंग एलिमेंट बियरिंग की तुलना में फ्लुइड बियरिंग्स को कम NRRO (नॉन रिपीटेबल रन आउट) के साथ बनाया जा सकता है। यह आधुनिक हार्ड डिस्क ड्राइव और अल्ट्रा सटीक स्पिंडल में महत्वपूर्ण हो सकता है।

कम्प्रेसर में शाफ्ट का समर्थन करने और पता लगाने के लिए टिल्टिंग पैड बियरिंग्स का उपयोग रेडियल बियरिंग्स के रूप में किया जाता है।

नुकसान

  • बीयरिंगों को घिसाव से बचाने के लिए दबाव बनाए रखना चाहिए और दबाव पड़ने पर हीड्रास्टाटिक प्रकार पूरी तरह से स्थिर हो सकते हैं।
  • कुल मिलाकर बिजली की खपत आमतौर पर बॉल बेयरिंग की तुलना में अधिक होती है।
  • बिजली की खपत और कठोरता या नमी तापमान के साथ काफी भिन्न होती है, जो व्यापक तापमान सीमा स्थितियों में तरल असर के डिजाइन और संचालन को जटिल बनाती है।
  • कई प्रकार के द्रव बीयरिंग विनाशकारी रूप से सदमे की स्थिति या आपूर्ति दबाव के अप्रत्याशित नुकसान के तहत जब्त कर सकते हैं। बॉल बेयरिंग अधिक धीरे-धीरे बिगड़ते हैं और ध्वनिक लक्षण प्रदान करते हैं।
  • बॉल बेयरिंग में केज फ्रीक्वेंसी वाइब्रेशन की तरह, हाफ फ्रीक्वेंसी भंवर एक बियरिंग अस्थिरता है जो सनकी अग्रगमन उत्पन्न करती है जिससे खराब प्रदर्शन और कम जीवन हो सकता है।
  • द्रव का रिसाव; असर में द्रव रखना तरल प्रकार के लिए एक चुनौती हो सकती है, कुछ स्थितियों में वैक्यूम रिकवरी और निस्पंदन की आवश्यकता हो सकती है।
  • तेल द्रव बीयरिंग उन वातावरणों में अव्यावहारिक हैं जहां तेल रिसाव विनाशकारी हो सकता है या जहां रखरखाव किफायती नहीं है।
  • असर वाले "पैड" को अक्सर जोड़े या ट्रिपल में इस्तेमाल करना पड़ता है ताकि बियरिंग को झुकाने और एक तरफ से तरल पदार्थ खोने से बचा जा सके।
  • ग्रीस रहित यांत्रिक बीयरिंगों के विपरीत, द्रव बीयरिंग कुछ विशेष वैज्ञानिक अनुसंधान अनुप्रयोगों के लिए आवश्यक बेहद कम तापमान पर काम नहीं कर सकते।

कुछ द्रव बीयरिंग

आइस स्केटिंग एक हाइड्रोडायनेमिक फ्लूइड बेयरिंग बनाते हैं जहां स्केट और बर्फ पानी की एक परत से अलग हो जाते हैं।

पन्नी बीयरिंग

फ़ॉइल बियरिंग एक प्रकार का फ़्लूइड डायनामिक एयर बियरिंग है जिसे 1960 के दशक में Garrett AiResearch द्वारा हाई स्पीड टर्बाइन अनुप्रयोगों में पेश किया गया था। वे काम कर रहे तरल पदार्थ के रूप में एक गैस का उपयोग करते हैं, आमतौर पर हवा, और किसी बाहरी दबाव प्रणाली की आवश्यकता नहीं होती है, लेकिन स्पिन-अप और स्पिन-डाउन के दौरान पहनने से रोकने के लिए सावधानीपूर्वक डिजाइन की आवश्यकता होती है जब असर भौतिक संपर्क बनाता है।

पानी-चिकनाई रबर बीयरिंग

वाटर-लुब्रिकेटेड रबर बेयरिंग में लंबे बेलनाकार धातु का खोल होता है जो अक्षीय खांचे द्वारा अलग किए गए कई रबर स्टैव को होस्ट करता है। बेयरिंग के उपयोग के तीन प्रमुख लाभ हैं: (i) बियरिंग के माध्यम से जाने वाले पंप किए गए पानी को स्नेहक के रूप में आसानी से उपयोग किया जाता है, जो पंप संचालन लागत को कम करता है; (ii) जल प्रवाह गर्मी और महीन कणों को असर वाले खांचे से दूर ले जाता है; और (iii) रबर का प्राकृतिक लचीलापन असर को झटके और कंपन अवशोषण और पहनने के प्रतिरोध के लिए अच्छा गुण देता है। वाटर लुब्रिकेटेड रबर बीयरिंग मिश्रित स्नेहन की स्थिति में काम करते हैं।[5]

रैखिक और घूर्णी गति प्रदान करने के लिए प्रयुक्त वायु बीयरिंग

वायु बीयरिंग

प्रिंटेड सर्किट बोर्ड के लिए ड्रिल स्पिंडल पर एयर बेयरिंग

संपर्क-रोलर बियरिंग्स के विपरीत, एक एयर बियरिंग (या एयर कॉस्टर) सतहों के बीच अत्यधिक कम घर्षण लोड-असर इंटरफ़ेस प्रदान करने के लिए दबाव वाली हवा की एक पतली फिल्म का उपयोग करता है। दो सतहें स्पर्श नहीं करती हैं। गैर-संपर्क होने के कारण, एयर बियरिंग्स घर्षण, घिसाव, कणों और स्नेहक से निपटने की पारंपरिक असर संबंधी समस्याओं से बचते हैं, और सटीक स्थिति में विशिष्ट लाभ प्रदान करते हैं, जैसे कि बैकलैश और स्टिक्शन की कमी, साथ ही उच्च गति वाले अनुप्रयोगों में।

असर की द्रव फिल्म वह हवा है जो असर वाली सतह पर असर के माध्यम से बहती है। एयर बेयरिंग का डिज़ाइन ऐसा है कि, हालाँकि हवा लगातार बियरिंग गैप से निकलती है, बियरिंग के चेहरों के बीच का दबाव काम के भार का समर्थन करने के लिए पर्याप्त है। यह दबाव बाह्य रूप से (वायुगतिकीय) या आंतरिक रूप से (वायुगतिकीय) उत्पन्न हो सकता है।

वायुगतिकीय बीयरिंग केवल उच्च गति वाले अनुप्रयोगों में संचालित किए जा सकते हैं, कम गति पर लोड असर के लिए एयरोस्टैटिक बीयरिंग की आवश्यकता होती है। दोनों प्रकारों के लिए अत्यधिक तैयार सतहों और सटीक निर्माण की आवश्यकता होती है।

उदाहरण

एयर हॉकी एक एरोस्टैटिक बियरिंग पर आधारित खेल है जो कम घर्षण प्रदान करने के लिए पक और खिलाड़ियों के पैडल को निलंबित करता है और इस प्रकार उच्च पक गति को बनाए रखता है। बेयरिंग आवधिक छिद्रों के साथ एक समतल तल का उपयोग करता है जो परिवेशी दबाव के ठीक ऊपर हवा प्रदान करता है। पक और पैडल हवा पर टिके रहते हैं।

माइकल/किंग्सबरी/मीबा टिल्टिंग-पैड फ्लुइड बियरिंग्स

मिशेल/किंग्सबरी फ्लूड डायनामिक टिल्टिंग-पैड बियरिंग्स का आविष्कार स्वतंत्र रूप से और लगभग एक साथ ब्रिटिश मूल के ऑस्ट्रेलियाई, एंथोनी जॉर्ज माल्डन मिशेल और अमेरिकी ट्राइबोलॉजिस्ट अल्बर्ट किंग्सबरी दोनों ने किया था। पैड्स को पिवट करने के लिए उपयोग किए जाने वाले दृष्टिकोण में अंतर को छोड़कर दोनों डिज़ाइन लगभग समान थे। माइकेल ने गणितीय रूप से दबाव वितरण को व्युत्पन्न किया जहां एक स्पैन-वार लाइन पिवट रखा गया था, जिससे लोड को अधिकतम द्रव दबाव के बिंदु के माध्यम से कार्य करने की अनुमति मिली। किंग्सबरी पेटेंट में इस गणितीय दृष्टिकोण का अभाव था, और पैड के धुरी बिंदु को असर के ज्यामितीय केंद्र में रखा गया था।[6] मिशेल का पेटेंट (ब्रिटेन और ऑस्ट्रेलिया में) 1905 में प्रदान किया गया था, जबकि किंग्सबरी का पहला पेटेंट प्रयास 1907 था। किंग्सबरी का यू.एस. पेटेंट अंततः 1911 में प्रदान किया गया था जब उन्होंने प्रदर्शित किया कि वे कई वर्षों से इस अवधारणा पर काम कर रहे थे। जैसा कि मिशेल के एक लंबे समय के कर्मचारी सिडनी वॉकर ने कहा है, किंग्सबरी का पेटेंट प्रदान करना "एक झटका था जिसे स्वीकार करना मिशेल के लिए कठिन था"।

बियरिंग में अनुभागीय जूते, या पिवोट्स पर पैड होते हैं। जब असर चालू होता है, तो असर का घूमने वाला हिस्सा चिपचिपा ड्रैग के माध्यम से ताजा तेल को पैड क्षेत्र में ले जाता है। द्रव दबाव पैड को थोड़ा झुका देता है, जिससे जूता और अन्य असर वाली सतह के बीच एक संकीर्ण कसना पैदा हो जाता है। इस कसना के पीछे दाबित द्रव का एक कील बनता है, जो गतिमान भागों को अलग करता है। असर भार और गति के साथ पैड का झुकाव अनुकूल रूप से बदलता है। विभिन्न डिज़ाइन विवरण ओवरहीटिंग और पैड क्षति से बचने के लिए तेल की निरंतर पुनःपूर्ति सुनिश्चित करते हैं।[7]

मिशेल/किंग्सबरी फ्लुइड बियरिंग्स का उपयोग सैकड़ों टन वजन वाले टर्बाइनों और जनरेटरों को सहारा देने के लिए पनबिजली संयंत्रों सहित हेवी-ड्यूटी रोटेटिंग उपकरणों की एक विस्तृत विविधता में किया जाता है। उनका उपयोग बहुत भारी मशीनरी में भी किया जाता है, जैसे समुद्री प्रोपेलर शाफ्ट।

यह संभावना है कि सर्विस में पहला टिल्टिंग पैड 1907 में जॉर्ज वीमोथ (प्राइवेट) लिमिटेड (ए.जी.एम. मिशेल के मार्गदर्शन में) द्वारा बनाया गया था, जो मरे नदी, विक्टोरिया, ऑस्ट्रेलिया में कोहुना में एक केन्द्रापसारक पंप के लिए मिशेल के प्रकाशित होने के दो साल बाद और प्रकाशित हुआ था। रेनॉल्ड के समीकरण के लिए अपने त्रि-आयामी समाधान का पेटेंट कराया। 1913 तक, समुद्री अनुप्रयोगों के लिए टिल्टिंग-पैड बियरिंग के महान गुणों को मान्यता दी गई थी। असर के साथ फिट होने वाला पहला ब्रिटिश जहाज क्रॉस-चैनल स्टीमबोट द पेरिस था, लेकिन प्रथम विश्व युद्ध के दौरान कई नौसैनिक जहाजों को समान रूप से सुसज्जित किया गया था। व्यावहारिक परिणाम शानदार थे - परेशानी वाला थ्रस्ट ब्लॉक नाटकीय रूप से छोटा और हल्का हो गया, काफी अधिक कुशल, और उल्लेखनीय रूप से रखरखाव की परेशानी से मुक्त हो गया। यह अनुमान लगाया गया था कि रॉयल नेवी ने अकेले 1918 में मिशेल के टिल्टिंग-पैड बियरिंग्स को फिट करने के परिणामस्वरूप 500,000 पाउंड के मूल्य पर कोयले की बचत की।

एएसएमई (संदर्भ लिंक देखें) के अनुसार, अमेरिका में पहला मिचेल/किंग्सबरी फ्लुइड बेयरिंग होल्टवुड हाइड्रोइलेक्ट्रिक पावर प्लांट (लैंकेस्टर, पेन्सिलवेनिया, यूएस के पास सुशेखना नदी पर) में 1912 में स्थापित किया गया था। 2.25-टन बियरिंग सपोर्ट करता है लगभग 165 टन के घूमने वाले द्रव्यमान के साथ एक पानी टरबाइन और बिजली जनरेटर और पानी टरबाइन दबाव और 40 टन जोड़ते हैं। बेयरिंग 1912 से लगभग निरंतर सेवा में है, जिसमें कोई पुर्जा नहीं बदला गया है। ASME ने बताया कि यह अभी भी 2000 तक सेवा में था। 2002 तक, निर्माता का अनुमान है कि होल्टवुड में बियरिंग्स का रखरखाव-मुक्त जीवन लगभग 1,300 वर्षों का होना चाहिए।

अब तक टिल्टिंग पैड बियरिंग विस्तारक, पंप, गैस या स्टीम टर्बाइन या कंप्रेशर्स जैसे रोटेटिंग उपकरण के लिए एक आवश्यक भूमिका निभाते हैं। 20वीं सदी की शुरुआत से इस्तेमाल किए जाने वाले पारंपरिक बैबिट बियरिंग्स के आगे मीबा जैसे आधुनिक निर्माता अन्य सामग्रियों का इस्तेमाल करते हैं, उदाहरण के लिए कांस्य या कॉपर-क्रोमियम और साथ ही बियरिंग्स के प्रदर्शन को बेहतर बनाने के लिए।[8]

यह भी देखें

  • सादे बियरिंग
  • कुगेल फव्वारा

संदर्भ

  1. 1.0 1.1 1.2 1.3 Rowe, W. Brian (2012). Hydrostatic, Aerostatic and Hybrid Bearing Design. Butterworth-Heinemann. pp. 1–4. ISBN 0123972396.
  2. [1], "Hydrostatic nut and lead screw assembly, and method of forming said nut", issued 1994-12-29 
  3. Girard, L. Dominique (1852). Hydraulique appliquée. Nouveau système de locomotion sur les chemins de fer (Applied hydraulics. New locomotion system for railways). Ecole Polytechnique.
  4. Il’ina T.E., Prodan N.V. (2015). "Element design for an inkjet system of hydrostatic gas bearing control". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 15 (5): 921–929.