Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 1:45"): {\displaystyle \sigma \sqrt{\frac{\pi}{2}}</गणित>| माध्यिका =<math>\sigma\sqrt{2\ln(2)}}
सम्भवता सिद्धांत और सांख्यिकी में, रेले वितरण गैर-ऋणात्मक-मूल्यवान यादृच्छिक चर के लिए सतत सम्भावित वितरण है। रीस्केलिंग तक, यह टी- वितरण के साथ स्वतंत्रता की दो परिणामों के साथ मेल खाता है।
वितरण का नाम जॉन स्ट्रट, तीसरे बैरन रेले के नाम पर रखा गया है (/ˈreɪli/).[1]
रेले वितरण अधिकांशतः तब देखा जाता है जब सदिश का समग्र परिमाण उसके दिशात्मक यूक्लिडियन सदिश अपघटन से संबंधित होता है। उदाहरण के लिए जहां रेले वितरण स्वाभाविक रूप से उत्पन्न होता है, वहा विमान (ज्यामिति) में हवा के वेग का विश्लेषण किया जाता है।
यह मानते हुए कि प्रत्येक घटक असंबंधित है, समान वितरण के साथ सामान्य वितरण और शून्य माध्य तो समग्र हवा की गति (यूक्लिडियन सदिश परिमाण) को रेले वितरण द्वारा चित्रित किया जाता है।
वितरण का दूसरा उदाहरण यादृच्छिक जटिल संख्याओं के मामले में उत्पन्न होता है, जिनके वास्तविक और काल्पनिक घटक स्वतंत्र रूप से समान भिन्नता और शून्य माध्य के साथ सामान्य वितरण को समान रूप से वितरित करते हैं। उस स्थिति में, सम्मिश्र संख्या का निरपेक्ष मान रेले-वितरित होता है।
जहां पर वितरण का पैमाना पैरामीटर है जो संचयी वितरण समारोह है[2]
के लिए
यादृच्छिक सदिश लंबाई से संबंध
द्वि-आयामी सदिश पर विचार करें जिसमें ऐसे घटक होते हैं जो द्विभाजित सामान्य वितरण होते हैं जो शून्य पर केंद्रित होते हैं और स्वतंत्र होते हैं। फिर और घनत्व कार्य करते हैं
वह की लंबाई होने देता है, फिर संचयी वितरण समारोह होता है
अंत में प्रायिकता घनत्व फ़ंक्शन के लिए इसके संचयी वितरण समारोह का व्युत्पन्न है, जो कलन के मौलिक प्रमेय द्वारा होता है
रेले वितरण में दो के अतिरिक्त अन्य आयामों के सदिशो को सामान्यीकृत करना होता है।
ऐसे भी सामान्यीकरण होते हैं जो घटकों में असमान प्रसरण या सह संबंध (होयट वितरण) में होते है या जब सदिश Y बहुभिन्नरूपी टी-वितरण का अनुसरण करता है। द्विभाजित छात्र टी-वितरण भी देखें (हॉटेलिंग का टी-वर्ग वितरण)।[3]
Generalization to bivariate Student's t-distribution
मान लीजिए घटकों के साथ एक यादृच्छिक सदिश है जो एक बहुभिन्नरूपी टी-वितरण का अनुसरण करता है। यदि घटक दोनों का औसत शून्य, समान विचरण है और स्वतंत्र हैं, तो द्विभाजित छात्र-टी वितरण रूप लेता है
होने देना का परिमाण हो . तब परिमाण का संचयी वितरण फलन (सीडीएफ) है
जहां पर डिस्क (चक्र) द्वारा परिभाषित किया जाता है
ध्रुवीय निर्देशांक में परिवर्तित होने से सीडीएफ बन जाता है:
अंत में, परिमाण का प्रायिकता घनत्व फलन (पीडीएफ) प्राप्त किया जाता है
के रूप में सीमा में , रेले वितरण को पुनः प्राप्त किया जाता है क्योंकि
अंतराल (0, 1) में समान वितरण (निरंतर) से लिया गया यादृच्छिक चर U दिया गया है, फिर चर
पैरामीटर के साथ रेले वितरण है . यह व्युत्क्रम परिवर्तन प्रतिचयन-पद्धति को लागू करके प्राप्त किया जाता है।
संबंधित वितरण
रेले वितरित किया जाता है यदि , कहाँ पे और स्वतंत्र सामान्य वितरण हैं।[6] इससे प्रतीक के प्रयोग की प्रेरणा मिलती है रेले घनत्व के उपरोक्त पैरामीट्रिजेशन में।
चावल का वितरण रेले वितरण का गैर-केंद्रीय वितरण है: .
आकार पैरामीटर k=2 के साथ वीबुल वितरण रेले वितरण देता है। फिर रेले वितरण पैरामीटर वेइबुल स्केल पैरामीटर के अनुसार संबंधित है
मैक्सवेल-बोल्ट्ज़मैन वितरण तीन आयामों में सामान्य सदिश के परिमाण का वर्णन करता है।
यदि घातीय वितरण है , तब
अर्ध-सामान्य वितरण रेले वितरण का अविभाज्य विशेष स्थिति है।
अनुप्रयोग
σ के अनुमान का अनुप्रयोग चुंबकीय अनुनाद इमेजिंग (MRI) में पाया जा सकता है। चूंकि एमआरआई छवियों को जटिल संख्या छवियों के रूप में अंकित किया जाता है, लेकिन अधिकांशतः परिमाण छवियों के रूप में देखा जाता है, पृष्ठभूमि डेटा रेले वितरित होता है। इसलिए, पृष्ठभूमि डेटा से एमआरआई छवि में शोर भिन्नता का अनुमान लगाने के लिए उपर्युक्त सूत्र का उपयोग किया जा सकता है।[7][8] [[आहार (पोषण)]] पोषक तत्वों के स्तर और मानव और पशुपालन प्रतिक्रियाओं को जोड़ने के लिए रेले वितरण को पोषण के क्षेत्र में भी नियोजित किया गया था। इस तरह, पोषक तत्व प्रतिक्रिया संबंध की गणना करने के लिए पैरामीटर σ का उपयोग किया जा सकता है।[9]
प्राक्षेपिकी के क्षेत्र में, रेले वितरण का उपयोग गोलाकार त्रुटि की संभावना की गणना के लिए किया जाता है - हथियार की त्रुटिहीनता का उपाय।
भौतिक समुद्रशास्त्र में, महत्वपूर्ण तरंग ऊंचाई का वितरण लगभग रेले वितरण का अनुसरण करता है।[10]
↑den Dekker, A. J.; Sijbers, J. (2014). "Data distributions in magnetic resonance images: a review". Physica Medica. 30 (7): 725–741. doi:10.1016/j.ejmp.2014.05.002. PMID25059432.