रेले वितरण
Probability density function ![]() | |||
Cumulative distribution function ![]() | |||
Parameters | scale: | ||
---|---|---|---|
Support | |||
CDF | |||
Quantile | |||
Mean | Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 1:45"): {\displaystyle \sigma \sqrt{\frac{\pi}{2}}</गणित>| माध्यिका =<math>\sigma\sqrt{2\ln(2)}} |
सम्भवता सिद्धांत और सांख्यिकी में, रेले वितरण गैर-ऋणात्मक-मूल्यवान यादृच्छिक चर के लिए सतत सम्भावित वितरण है। रीस्केलिंग तक, यह टी- वितरण के साथ स्वतंत्रता की दो परिणामों के साथ मेल खाता है।
वितरण का नाम जॉन स्ट्रट, तीसरे बैरन रेले के नाम पर रखा गया है (/ˈreɪli/).[1]
रेले वितरण अधिकांशतः तब देखा जाता है जब सदिश का समग्र परिमाण उसके दिशात्मक यूक्लिडियन सदिश अपघटन से संबंधित होता है। उदाहरण के लिए जहां रेले वितरण स्वाभाविक रूप से उत्पन्न होता है, वहा विमान (ज्यामिति) में हवा के वेग का विश्लेषण किया जाता है।
यह मानते हुए कि प्रत्येक घटक असंबंधित है, समान वितरण के साथ सामान्य वितरण और शून्य माध्य तो समग्र हवा की गति (यूक्लिडियन सदिश परिमाण) को रेले वितरण द्वारा चित्रित किया जाता है।
वितरण का दूसरा उदाहरण यादृच्छिक जटिल संख्याओं की स्थिति से उत्पन्न होता है, जिनके वास्तविक और काल्पनिक घटक स्वतंत्र रूप से समान भिन्नता और शून्य माध्य के साथ सामान्य वितरण को समान रूप से वितरित करते हैं। इस स्थिति मेंसम्मिश्र संख्या का निरपेक्ष मान रेले-वितरित होता है।
परिभाषा
रैले बंटन का प्रायिकता घनत्व का फलन है[2]
जहां पर वितरण का पैमाना मापदंड है जो संचयी वितरण आयोजन है[2]
के लिए
यादृच्छिक सदिश लंबाई से संबंध
द्वि-आयामी सदिश पर विचार करें जिसमें ऐसे घटक होते हैं जो द्विभाजित सामान्य वितरण होते हैं जो शून्य पर केंद्रित होते हैं और स्वतंत्र होते हैं। फिर और घनत्व कार्य करते हैं
वह की लंबाई होने देता है, फिर संचयी वितरण आयोजन होता है
जहां पर डिस्क (चक्र) है
ध्रुवीय समन्वय प्रणाली में एकाधिक अभिन्न लिखने से यह बन जाता है
अंत में प्रायिकता घनत्व आयोजन के लिए इसके संचयी वितरण आयोजन का व्युत्पन्न है, जो कार्य के मौलिक प्रमेय द्वारा होता है
रेले वितरण में दो के अतिरिक्त अन्य आयामों के सदिशो को सामान्यीकृत किया जाता है।
कुछ ऐसे भी सामान्यीकरण होते हैं जो घटकों में असमान प्रसरण या सह संबंध (होयट वितरण) में होते है या जब सदिश Y बहुभिन्नरूपी टी-वितरण का अनुसरण करता है।तब द्विभाजित छात्र टी-वितरण भी देखें (हॉटेलिंग का टी-वर्ग वितरण)।[3]
Expandstyle="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " | Generalization to bivariate Student's t-distribution
|
---|
गुण
गुण (गणित) द्वारा दिया जाता है:
- जहां पर गामा आयोजन है।
रेले यादृच्छिक चर का माध्य इस प्रकार है :
रेले यादृच्छिक चर का मानक विचलन है।
रेले यादृच्छिक चर का प्रसरण है।
युक्ति (सांख्यिकी) है और अधिकतम पीडीएफ है।
तिरछापन इसके द्वारा दिया गया है।
अतिरिक्त कुकुदता द्वारा दिया जाता है।
विशेष कार्य (सम्भवता सिद्धांत) द्वारा दिया गया है।
जहां पर काल्पनिक त्रुटि आयोजन है।जिसके द्वारा आघूर्ण फलन दिया जाता है।
जहां पर त्रुटि कार्य है।
विभेदक परिक्षय
अंतर परिक्षय द्वारा दिया जाता है[citation needed]
जहां पर यूलर-मास्चेरोनी स्थिरांक है।
मापदंड अनुमान
इन स्वतंत्र और समान रूप से वितरित रेले यादृच्छिक चर के प्रतिरूप को देखते हुए मापदंड के साथ ,
- अधिकतम संभावना का अनुमान होता है और अनुमानक का पूर्वाग्रह भी होता है।
- पक्षपाती अनुमानक होता है जिसे सूत्र के माध्यम से प्रमाणित किया जाता है।
विश्वास अंतराल
(1− α) विश्वास अंतराल के खोज करने के लिए, पहले बाउंड (मिला) खोजें
तो स्केल मापदंड (मापनी प्राचल) सीमा के अंदर आ जाता है।
यादृच्छिक चर उत्पन्न करना
यादृच्छिक चर केअंतराल (0, 1) में समान वितरण (निरंतर) से लिया गया यादृच्छिक चर U दिया गया है, फिर चर
मापदंड के साथ . रेले वितरण होता है यह व्युत्क्रम परिवर्तन प्रतिचयन-पद्धति को प्रयुक्त करके प्राप्त किया जाता है।
संबंधित वितरण
- रेले वितरित किया जाता है यदि , जहां पर और स्वतंत्रता सामान्य वितरण हैं।[6] इससे प्रतीक रेले घनत्व के उपरोक्त पैरामीट्रिजेशन में प्रयोग की प्रेरणा मिलती है।
- महत्व मानक जटिल सामान्य वितरण चर z रेले वितरित होता है।
- v = 2 के साथ टी-वितरण σ = 1 के रेले वितरण के समांतर होता है।
- यदि , तब मापदंड के साथ टी-वर्ग वितरण है , स्वतंत्रता की कोटि दो के बराबर (N = 2) होता है।
- यदि , तब माप दंडों के साथ गामा वितरण और होता है।
- चावल का वितरण रेले वितरण का गैर-केंद्रीय वितरण होता है .
- आकार मापदंड k=2 के साथ वीबुल वितरण रेले वितरण देता है। फिर रेले वितरण मापदंड वेइबुल स्केल मापदंड (मापनी प्राचल) के अनुसार संबंधित है।
- मैक्सवेल-बोल्ट्ज़मैन वितरण तीन आयामों में सामान्य सदिश के परिमाण का वर्णन करता है।
- यदि घातीय वितरण है , तब
- अर्ध-सामान्य वितरण रेले वितरण की अविभाज्य विशेष स्थिति होती है।
अनुप्रयोग
रेले वितरण में σ के अनुमान का अनुप्रयोग चुंबकीय अनुनाद रहस्योद्घाटन (MRI) में पाया जाता है। चूंकि एमआरआई प्रभावों को जटिल संख्या प्रभावों के रूप में अंकित किया जाता है, परन्तु अधिकांशतः परिमाण को प्रभावों के रूप में देखा जाता है फिर भी पृष्ठभूमि के आंकड़े पर रेले वितरित होती है इसलिए पृष्ठभूमि के आंकड़े से एमआरआई के प्रभावों की छवि में प्रसिद्ध भिन्नता का अनुमान लगाने के लिए उपर्युक्त सूत्र का उपयोग किया जाता है।[7]
[8]आहार (पोषण) पोषक तत्वों के स्तर और मानव और पशुपालन प्रतिक्रियाओं के योग के लिए रेले वितरण को पोषण के क्षेत्र में भी नियोजित किया गया था। इस तरह, पोषक तत्व की प्रतिक्रियाओ के संबंध की गणना करने के लिए मापदंड σ का उपयोग किया जा सकता है।[9]
प्राक्षेपिकी के क्षेत्र में, रेले वितरण का उपयोग गोलाकार त्रुटि की संभावना की गणना करने और हथियार की त्रुटिहीनता का उपाय करने लिए किया जाता है।
भौतिक समुद्र शास्त्र में, महत्वपूर्ण तरंग की ऊंचाई का वितरण रेले वितरण का अनुसरण करता है।[10]
यह भी देखें
- व्रत्तीय त्रुटि संभावित
- रेले लुप्तप्राय
- रेले मिश्रण वितरण
- चावल वितरण
संदर्भ
- ↑ "The Wave Theory of Light", Encyclopedic Britannica 1888; "The Problem of the Random Walk", Nature 1905 vol.72 p.318
- ↑ Jump up to: 2.0 2.1 Papoulis, Athanasios; Pillai, S. (2001) Probability, Random Variables and Stochastic Processes. ISBN 0073660116, ISBN 9780073660110[page needed]
- ↑ Röver, C. (2011). "Student-t based filter for robust signal detection". Physical Review D. 84 (12): 122004. arXiv:1109.0442. Bibcode:2011PhRvD..84l2004R. doi:10.1103/physrevd.84.122004.
- ↑ Siddiqui, M. M. (1964) "Statistical inference for Rayleigh distributions", The Journal of Research of the National Bureau of Standards, Sec. D: Radio Science, Vol. 68D, No. 9, p. 1007
- ↑ Siddiqui, M. M. (1961) "Some Problems Connected With Rayleigh Distributions", The Journal of Research of the National Bureau of Standards; Sec. D: Radio Propagation, Vol. 66D, No. 2, p. 169
- ↑ Hogema, Jeroen (2005) "Shot group statistics"
- ↑ Sijbers, J.; den Dekker, A. J.; Raman, E.; Van Dyck, D. (1999). "Parameter estimation from magnitude MR images". International Journal of Imaging Systems and Technology. 10 (2): 109–114. CiteSeerX 10.1.1.18.1228. doi:10.1002/(sici)1098-1098(1999)10:2<109::aid-ima2>3.0.co;2-r.
- ↑ den Dekker, A. J.; Sijbers, J. (2014). "Data distributions in magnetic resonance images: a review". Physica Medica. 30 (7): 725–741. doi:10.1016/j.ejmp.2014.05.002. PMID 25059432.
- ↑ Ahmadi, Hamed (2017-11-21). "A mathematical function for the description of nutrient-response curve". PLOS ONE. 12 (11): e0187292. Bibcode:2017PLoSO..1287292A. doi:10.1371/journal.pone.0187292. ISSN 1932-6203. PMC 5697816. PMID 29161271.
- ↑ "Rayleigh Probability Distribution Applied to Random Wave Heights" (PDF). United States Naval Academy.
{{cite web}}
: CS1 maint: url-status (link)