लेजर अवशोषण स्पेक्ट्रोमेट्री

From Vigyanwiki
Revision as of 18:26, 1 February 2023 by alpha>Indicwiki (Created page with "{{multiple issues|{{Essay-like|article|date=October 2008}} {{Technical|date=February 2019}}}} लेज़र अवशोषण स्पेक्ट्रोमेट...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

लेज़र अवशोषण स्पेक्ट्रोमेट्री (एलएएस) उन तकनीकों को संदर्भित करता है जो अवशोषण स्पेक्ट्रोमेट्री (एएस) द्वारा गैस चरण में एक प्रजाति की एकाग्रता या मात्रा का आकलन करने के लिए लेजर का उपयोग करते हैं।

सामान्य रूप से स्पेक्ट्रोस्कोपी तकनीक, और विशेष रूप से लेजर-आधारित तकनीक, गैस चरण में घटकों का पता लगाने और निगरानी के लिए एक बड़ी क्षमता है।वे कई महत्वपूर्ण गुणों को जोड़ते हैं, उदा।एक उच्च संवेदनशीलता और गैर-घुसपैठ और रिमोट सेंसिंग क्षमताओं के साथ एक उच्च चयनात्मकता।लेजर अवशोषण स्पेक्ट्रोमेट्री गैस चरण में परमाणुओं और अणुओं के मात्रात्मक आकलन के लिए सबसे अच्छी उपयोग की जाने वाली तकनीक बन गई है।यह विभिन्न प्रकार के अन्य अनुप्रयोगों के लिए एक व्यापक रूप से उपयोग की जाने वाली तकनीक भी है, उदा।ऑप्टिकल फ्रीक्वेंसी मैट्रोलोजी के क्षेत्र के भीतर या प्रकाश पदार्थ की बातचीत के अध्ययन में।सबसे आम तकनीक ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी (TDLAs) है जो व्यवसायिक हो गया है और इसका उपयोग विभिन्न प्रकार के अनुप्रयोगों के लिए किया जाता है।

प्रत्यक्ष लेजर अवशोषण स्पेक्ट्रोमेट्री

LAS के सबसे आकर्षक लाभ प्रजातियों के पूर्ण मात्रात्मक अनुसंधान प्रदान करने की क्षमता है।[1] इसका सबसे बड़ा नुकसान यह है कि यह उच्च स्तर से सत्ता में एक छोटे से परिवर्तन के माप पर निर्भर करता है;प्रकाश स्रोत या ऑप्टिकल सिस्टम के माध्यम से ट्रांसमिशन द्वारा पेश किया गया कोई भी शोर तकनीक की संवेदनशीलता को खराब कर देगा।प्रत्यक्ष लेजर अवशोषण स्पेक्ट्रोमेट्रिक (डीएलएएस) तकनीक इसलिए अक्सर अवशोषण का पता लगाने तक सीमित होती है ~ 10−3 , जो सैद्धांतिक शॉट शोर स्तर से बहुत दूर है, जो एक एकल पास DAS तकनीक के लिए 10 में है−7 - 10−8 रेंज।यह पता लगाने की सीमा कई प्रकार के अनुप्रयोगों के लिए अपर्याप्त है।

पता लगाने की सीमा को (1) शोर को कम करने के लिए, (2) बड़े संक्रमण की ताकत के साथ संक्रमण का उपयोग करके या (3) प्रभावी पथ लंबाई बढ़ाने से सुधार किया जा सकता है।पहले को एक मॉडुलन तकनीक के उपयोग से प्राप्त किया जा सकता है, दूसरा अपरंपरागत तरंग दैर्ध्य क्षेत्रों में संक्रमण का उपयोग करके प्राप्त किया जा सकता है, जबकि बाहरी गुहाओं का उपयोग करके तीसरा।

मॉड्यूलेटेड तकनीक

मॉड्यूलेशन तकनीक इस तथ्य का उपयोग करती है कि तकनीकी शोर आमतौर पर बढ़ती आवृत्ति (अक्सर 1/एफ शोर के रूप में संदर्भित) के साथ कम हो जाता है और उच्च आवृत्ति पर अवशोषण संकेत को एन्कोडिंग और पता लगाने से संकेत विपरीत पर सुधार होता है, जहां शोर स्तर कम है।सबसे आम मॉड्यूलेशन तकनीक, तरंग दैर्ध्य मॉड्यूलेशन स्पेक्ट्रोस्कोपी (WMS)[2] और आवृत्ति मॉड्यूलेशन स्पेक्ट्रोस्कोपी (एफएमएस),[3] अवशोषित संक्रमण के पार प्रकाश की आवृत्ति को तेजी से स्कैन करके इसे प्राप्त करें।दोनों तकनीकों का यह फायदा है कि अवशोषक की अनुपस्थिति में डिमोड्यूलेटेड सिग्नल कम है, लेकिन वे अवशिष्ट आयाम मॉड्यूलेशन द्वारा भी सीमित हैं, या तो लेजर से या ऑप्टिकल सिस्टम में कई प्रतिबिंबों से (फैब्री -पेरोट इंटरफेरोमीटर प्रभाव)।पर्यावरणीय जांच और प्रक्रिया नियंत्रण अनुप्रयोगों के लिए सबसे अधिक उपयोग की जाने वाली लेजर-आधारित तकनीक डायोड लेजर और डब्ल्यूएम पर आधारित है (आमतौर पर ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी के रूप में संदर्भित)।[4][5] WMS और FMS तकनीकों की विशिष्ट संवेदनशीलता 10 में है−5 रेंज।

उनके अच्छे ट्यूनबिलिटी और लंबे जीवनकाल (> 10,000 घंटे) के कारण, अधिकांश व्यावहारिक लेजर-आधारित अवशोषण स्पेक्ट्रोस्कोपी आज 760 & nbsp में वितरित प्रतिक्रिया लेजर द्वारा किया जाता है; नैनोमीटर-16 माइक्रोमेट्रे | μM रेंज।यह उन प्रणालियों को जन्म देता है जो न्यूनतम रखरखाव के साथ हजारों घंटों तक अप्राप्य चल सकती हैं।

लेजर अवशोषण स्पेक्ट्रोमेट्री मौलिक कंपन या इलेक्ट्रॉनिक संक्रमणों का उपयोग करके

एलएएस की पहचान सीमा में सुधार का दूसरा तरीका, बड़ी लाइन ताकत के साथ संक्रमणों को नियोजित करना है, या तो मौलिक कंपन बैंड या इलेक्ट्रॉनिक संक्रमणों में।पूर्व, जो आम तौर पर ~ 5 माइक्रोन पर रहता है, में लाइन की ताकत होती है जो कि विशिष्ट ओवरटोन संक्रमण की तुलना में अधिक परिमाण के ~ 2–3 ऑर्डर होते हैं।दूसरी ओर, इलेक्ट्रॉनिक संक्रमणों में अक्सर एक और 1-2 ऑर्डर होता है जो बड़ी रेखा की ताकत है।NO के इलेक्ट्रॉनिक संक्रमणों के लिए संक्रमण ताकत[clarification needed], जो पराबैंगनी रेंज में स्थित हैं (~ 227 & nbsp; nm पर) miR क्षेत्र की तुलना में बड़े परिमाण के ~ 2 आदेश हैं।[citation needed] एमआईआर क्षेत्र में काम करने वाले क्वांटम कैस्केड लेजर (क्यूसी) लेज़रों के हालिया विकास ने अपने मौलिक कंपन बैंड पर अणु प्रजातियों की संवेदनशील पता लगाने के लिए नई संभावनाएं खोल दी हैं।इलेक्ट्रॉनिक संक्रमणों को संबोधित करने वाले स्थिर सीडब्ल्यू प्रकाश को उत्पन्न करना अधिक कठिन है, क्योंकि ये अक्सर यूवी क्षेत्र में झूठ बोलते हैं।

गुहा ने अवशोषण स्पेक्ट्रोमेट्री को बढ़ाया

एलएएस की संवेदनशीलता में सुधार का तीसरा तरीका पथ की लंबाई बढ़ाना है।यह एक गुहा के अंदर प्रजातियों को रखकर प्राप्त किया जा सकता है जिसमें प्रकाश कई बार आगे और पीछे उछलता है, जिससे इंटरैक्शन की लंबाई में काफी वृद्धि हो सकती है।इसने (CEAS) के रूप में बढ़ाए गए गुहा के रूप में निरूपित तकनीकों के एक समूह को प्रेरित किया है।गुहा को या तो लेजर के अंदर रखा जा सकता है, जब इसे बाहरी गुहा के रूप में संदर्भित किया जाता है, तो इंट्राकैविटी को जन्म दिया।यद्यपि पूर्व तकनीक एक उच्च संवेदनशीलता प्रदान कर सकती है, इसकी व्यावहारिक प्रयोज्यता गैर-रैखिक प्रक्रियाओं द्वारा सीमित है।

बाहरी गुहा या तो मल्टीपास स्पेक्ट्रोस्कोपिक अवशोषण कोशिकाओं का हो सकता है। मल्टी-पास प्रकार, अर्थात् हेरियोट सेल या सफेद कोशिका (स्पेक्ट्रोस्कोपी), या गुंजयमान प्रकार का हो सकता है, सबसे अधिक बार एक फैब्री-पोरोट एटलोन के रूप में काम कर रहा है। फैब्री-प्रोट (एफपी) एटलन।जबकि मल्टी-पास कोशिकाएं आमतौर पर परिमाण के ~ 2 आदेशों तक की बढ़ी हुई बातचीत लंबाई प्रदान कर सकती हैं, गुंजयमान गुहाएं गुहा के चालाकी के क्रम में बहुत बड़ी पथ लंबाई बढ़ाने प्रदान कर सकती हैं, जो एक संतुलित के लिए है, जो एक संतुलित है।~ 99.99–99.999% की परावर्तन के साथ उच्च प्रतिबिंबित दर्पण के साथ गुहा ~ 10 हो सकता है4 से 105

गुंजयमान गुहाओं के साथ एक समस्या यह है कि एक उच्च चालाकी गुहा में संकीर्ण अनुदैर्ध्य मोड होता है, जो अक्सर कम हेटर्स रेंज में होता है।चूंकि CW लेज़रों में अक्सर MHz रेंज में फ्री-रनिंग लाइन-चौड़ाई होती है, और और भी बड़ा स्पंदित होता है, इसलिए लेजर लाइट को प्रभावी ढंग से एक उच्च चालाकी गुहा में जोड़ा जाना मुश्किल होता है।हालांकि, कुछ तरीके हैं इसे प्राप्त किया जा सकता है।ऐसी एक विधि वर्चंस है, जो एक साथ कई गुहा मोड को एक साथ उत्साहित करने के लिए एक आवृत्ति कंघी लेजर को नियुक्त करती है और ट्रेस गैस के अत्यधिक समानांतर माप के लिए अनुमति देती है।

गुहा रिंग-डाउन स्पेक्ट्रोस्कोपी

कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी (सीआरडीएस) में मोड-मिलान की स्थिति को गुहा में एक छोटी रोशनी पल्स को इंजेक्ट करके दरकिनार किया जाता है।शोषक का आकलन नाड़ी के गुहा क्षय समय की तुलना करके किया जाता है क्योंकि यह क्रमशः और ऑफ-रेजॉनेंस से गुहा से बाहर निकलता है।जबकि लेजर आयाम शोर से स्वतंत्र, यह तकनीक अक्सर दो लगातार मापों और गुहा के माध्यम से कम संचरण के बीच सिस्टम में ड्रिफ्ट द्वारा सीमित होती है।इसके बावजूद, ~ 10 में संवेदनशीलता−7 रेंज नियमित रूप से प्राप्त की जा सकती है (हालांकि सबसे जटिल सेटअप इस ~ 10 से नीचे पहुंच सकते हैं−9 )।इसलिए सीआरडीएस ने विभिन्न परिस्थितियों में संवेदनशील ट्रेस गैस विश्लेषण के लिए एक मानक तकनीक बनना शुरू कर दिया है।इसके अलावा, सीआरडीएस अब विभिन्न भौतिक मापदंडों (जैसे तापमान, दबाव, तनाव) संवेदन के लिए एक प्रभावी तरीका है।[6]


एकीकृत गुहा आउटपुट स्पेक्ट्रोस्कोपी

एकीकृत कैविटी आउटपुट स्पेक्ट्रोस्कोपी (ICOS) को कभी-कभी गुहा-संवर्धित अवशोषण स्पेक्ट्रोस्कोपी (CEAS) के रूप में कहा जाता है, जो गुहा दर्पणों में से एक के पीछे एकीकृत तीव्रता को रिकॉर्ड करता है, जबकि लेजर बार-बार एक या कई गुहा मोड में बह जाता है।[citation needed] हालांकि, उच्च चालाकी गुहाओं के लिए एक गुहा मोड का अनुपात छोटा होता है, जो कि चालाकी के व्युत्क्रम द्वारा दिया जाता है, जिससे ट्रांसमिशन के साथ -साथ एकीकृत अवशोषण छोटा हो जाता है।ऑफ-एक्सिस ICOS (OA-ICOS) मुख्य अक्ष के संबंध में एक कोण से लेजर प्रकाश को गुहा में जोड़कर इस पर सुधार करता है ताकि अनुप्रस्थ मोड के उच्च घनत्व के साथ बातचीत न करें।यद्यपि तीव्रता में उतार-चढ़ाव प्रत्यक्ष ऑन-एक्सिस ICO की तुलना में कम है, तकनीक, हालांकि, अभी भी कम ट्रांसमिशन और तीव्रता के उतार-चढ़ाव से सीमित है, जो कि उच्च क्रम अनुप्रस्थ मोड के आंशिक रूप से उत्तेजना के कारण है, और फिर से आम तौर पर संवेदनशीलता तक पहुंच सकता है ~ 10 ~ 10−7

निरंतर तरंग गुहा संवर्धित अवशोषण स्पेक्ट्रोमेट्री

CEAS तकनीकों का समूह जिसमें सुधार करने की सबसे बड़ी क्षमता है, वह यह है कि गुहा में लेजर प्रकाश के निरंतर युग्मन के आधार पर।हालांकि इसके लिए कैविटी मोड में से एक के लिए लेजर के एक सक्रिय लॉकिंग की आवश्यकता होती है।ऐसे दो तरीके हैं जिनमें यह किया जा सकता है, या तो ऑप्टिकल या इलेक्ट्रॉनिक प्रतिक्रिया द्वारा।ऑप्टिकल फीडबैक (ओएफ) लॉकिंग, मूल रूप से रोमनिनी एट अल द्वारा विकसित किया गया है।सीडब्ल्यू-सीआरडी के लिए,[7] लेजर को गुहा में लॉक करने के लिए गुहा से ऑप्टिकल प्रतिक्रिया का उपयोग करता है जबकि लेजर को धीरे-धीरे प्रोफाइल (सीस) में स्कैन किया जाता है।इस मामले में, कैविटी को एक वी-आकार की आवश्यकता होती है ताकि incoupling दर्पण से बचने के लिए।की-कीस संवेदनशीलता तक पहुंचने में सक्षम है ~ 10−8 रेंज, एक उतार -चढ़ाव वाली प्रतिक्रिया दक्षता द्वारा सीमित।[8] इलेक्ट्रॉनिक लॉकिंग को आमतौर पर पाउंड-ड्रेवर-हॉल तकनीक के साथ महसूस किया जाता है। पाउंड-ड्रेवर-हॉल (पीडीएच) तकनीक,[9] और आजकल एक अच्छी तरह से स्थापित तकनीक है, हालांकि कुछ प्रकार के लेज़रों के लिए इसे प्राप्त करना मुश्किल हो सकता है।[10][11] यह दिखाया गया है कि इलेक्ट्रॉनिक रूप से लॉक किए गए CEAS का उपयोग संवेदनशील के लिए किया जा सकता है जैसे कि ओवरटोन लाइनों पर।[12][13][14]


शोर-इम्यून गुहा-संवर्धित ऑप्टिकल-हेटेरोडाइन आणविक स्पेक्ट्रोस्कोपी

हालांकि, एक लॉकिंग दृष्टिकोण (DCEAS) के साथ CEAS को सीधे संयोजित करने के सभी प्रयासों में एक चीज समान है;वे गुहा की पूरी शक्ति का उपयोग करने का प्रबंधन नहीं करते हैं, अर्थात् (मल्टी-पास) शॉट-शोर स्तर के करीब लॉड तक पहुंचने के लिए, जो कि डीएएस से लगभग 2f/π बार नीचे है और ~ 10 तक नीचे हो सकता है−13 ।इसका कारण दुगना है: (i) कैविटी मोड के सापेक्ष लेजर की कोई भी शेष आवृत्ति शोर, संकीर्ण गुहा मोड के कारण, सीधे प्रेषित प्रकाश में आयाम शोर में परिवर्तित हो जाएगी, जिससे संवेदनशीलता बिगड़ा हो;और (ii) इनमें से कोई भी तकनीक किसी भी मॉड्यूलेशन तकनीक का उपयोग नहीं करती है, जहां वे अभी भी सिस्टम में 1/एफ शोर से पीड़ित हैं।हालांकि, एक तकनीक है जो अब तक एफएमएस के साथ लॉक किए गए सीएएस को मिलाकर गुहा का पूरा उपयोग करने में सफल रही है ताकि इन दोनों समस्याओं को दरकिनार कर दिया जा सके: शोर-इम्यून गुहा-संवर्धित ऑप्टिकल हेटेरोडीन आणविक स्पेक्ट्रोस्कोपी (नाइस-ओम्स)।इस तकनीक का पहला और अब तक अंतिम अहसास, आवृत्ति मानक अनुप्रयोगों के लिए प्रदर्शन किया गया, 5 • 10 के आश्चर्यजनक लॉड्स तक पहुंच गया−13 (1 • 10−14 cm−1 )।[15] यह स्पष्ट है कि यह तकनीक, सही ढंग से विकसित की गई है, ट्रेस गैस विश्लेषण के लिए किसी भी अन्य तकनीक की तुलना में एक बड़ी क्षमता है।[16]


संदर्भ

  1. A. Fried and D. Richter: Infrared absorption Spectroscopy, in Analytical Techniques for Atmospheric Measurements (Blackwell Publishing, 2006)
  2. Kluczynski, Pawel; Gustafsson, Jörgen; Lindberg, Åsa M.; Axner, Ove (2001). "Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals". Spectrochimica Acta Part B: Atomic Spectroscopy. 56 (8): 1277–1354. Bibcode:2001AcSpe..56.1277K. doi:10.1016/S0584-8547(01)00248-8. ISSN 0584-8547.
  3. Bjorklund, G. C.; Levenson, M. D.; Lenth, W.; Ortiz, C. (1983). "Frequency modulation (FM) spectroscopy". Applied Physics B: Photophysics and Laser Chemistry. 32 (3): 145–152. Bibcode:1983ApPhB..32..145B. doi:10.1007/BF00688820. hdl:10261/57307. ISSN 0721-7269. S2CID 117556046.
  4. Cassidy, D. T.; Reid, J. (1982). "Atmospheric pressure monitoring of trace gases using tunable diode lasers". Applied Optics. 21 (7): 1185–90. Bibcode:1982ApOpt..21.1185C. doi:10.1364/AO.21.001185. ISSN 0003-6935. PMID 20389829.
  5. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis", Opt. Las. Eng. 37 (2–3), 101–114 (2002).
  6. Paldus, Barbara A; Kachanov, Alexander A (2005). "An historical overview of cavity-enhanced methods". Canadian Journal of Physics. 83 (10): 975–999. Bibcode:2005CaJPh..83..975P. doi:10.1139/p05-054. ISSN 0008-4204.
  7. D. Romanini, A. A. Kachanav, J. Morville, and M. Chenevier, Proc. SPIE EUROPTO (Ser. Environmental Sensing) 3821 (8), 94 (1999)
  8. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking", Applied Physics B: Lasers and Optics 80 (8), 1027–1038 (2005)
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator", Applied Physics B 31 (2), 97–105 (1983)
  10. R. W. Fox, C. W. Oates, and L. W. Hollberg, "Stabilizing diode lasers to high finesse cavities", in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Elsevier Science, New York, 2002)
  11. J. L. Hall and T. W. Hansch, "External dye-laser frequency stabilizer", Optics Letters 9 (11), 502–504 (1984)
  12. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. Delabachelerie, and M. Ohtsu, "Highly Sensitive Detection of Molecular Absorption Using a High Finesse Optical Cavity", Optics Communications 107 (5–6), 369–372 (1994)
  13. M. Delabachelerie, K. Nakagawa, and M. Ohtsu, "Ultranarrow (C2H2)-C-13 Saturated-Absorption Lines at 1.5 Mu-M", Optics Letters 19 (11), 840–842 (1994)
  14. G. Gagliardi, G. Rusciano, and L. Gianfrani, "Sub-Doppler spectroscopy of (H2O)-O-18 at 1.4 μm", Applied Physics B: Lasers and Optics 70 (6), 883–888 (2000)
  15. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD", Journal of the Optical Society of America B-Optical Physics 16 (12), 2255–2268 (1999)
  16. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectrometry: Current status and future potential", Applied Physics B 92, 313–326 (2008).


बाहरी कड़ियाँ