एनएमओएस तर्क

From Vigyanwiki
Revision as of 23:24, 30 December 2022 by alpha>Indicwiki (Created page with "{{More citations needed|date=December 2009}} {{short description|Form of digital logic family in integrated circuits}} एन-टाइप मेटल-ऑक्साइड-...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एन-टाइप मेटल-ऑक्साइड-सेमीकंडक्टर लॉजिक एन-टाइप सेमीकंडक्टर | एन-टाइप (-) एमओएसएफईटी (मेटल-ऑक्साइड-सेमीकंडक्टर फील्ड इफ़ेक्ट ट्रांजिस्टर ) का उपयोग तर्क द्वार ्स और अन्य डिजिटल सर्किट को लागू करने के लिए करता है। ये एनएमओएस ट्रांजिस्टर एक पी-प्रकार अर्धचालक | पी-टाइप ट्रांजिस्टर बॉडी में एक इनवर्जन लेयर (सेमीकंडक्टर) बनाकर काम करते हैं। यह उलटा परत, जिसे एन-चैनल कहा जाता है, एन-टाइप सेमीकंडक्टर | एन-टाइप स्रोत और नाली टर्मिनलों के बीच इलेक्ट्रॉन ों का संचालन कर सकता है। तीसरे टर्मिनल, जिसे गेट कहा जाता है, पर वोल्टेज लगाकर एन-चैनल बनाया जाता है। अन्य MOSFET s की तरह, nMOS ट्रांजिस्टर के संचालन के चार तरीके हैं: कट-ऑफ (या सबथ्रेशोल्ड), ट्रायोड, संतृप्ति (कभी-कभी सक्रिय कहा जाता है), और वेग संतृप्ति।

कई वर्षों के लिए, एनएमओएस सर्किट तुलनात्मक [[ सीएमओएस तर्क ]] और पीएमओएस तर्क की तुलना में काफी तेज थे, जिन्हें बहुत धीमी पी-चैनल ट्रांजिस्टर का उपयोग करना पड़ा। सीएमओएस की तुलना में एनएमओएस का निर्माण करना भी आसान था, क्योंकि बाद वाले को पी-सब्सट्रेट पर विशेष एन-वेल्स में पी-चैनल ट्रांजिस्टर लागू करना पड़ता है। NMOS (और अधिकांश अन्य लॉजिक परिवार) के साथ प्रमुख दोष यह है कि एक DC करंट को एक लॉजिक गेट के माध्यम से प्रवाहित होना चाहिए, भले ही आउटपुट स्थिर अवस्था में हो (NMOS के मामले में कम)। इसका मतलब है कि सर्किट स्विचिंग न होने पर भी स्टेटिक पावर अपव्यय, यानी पावर ड्रेन।

इसके अतिरिक्त, डायोड-ट्रांजिस्टर लॉजिक, ट्रांजिस्टर-ट्रांजिस्टर लॉजिक, एमिटर-युग्मित लॉजिक आदि की तरह, असममित इनपुट लॉजिक स्तर NMOS और PMOS सर्किट को CMOS की तुलना में शोर के प्रति अधिक संवेदनशील बनाते हैं। इन नुकसानों के कारण CMOS लॉजिक ने माइक्रोप्रोसेसर ों जैसे अधिकांश हाई-स्पीड डिजिटल सर्किट में इनमें से अधिकांश प्रकारों को हटा दिया है, इस तथ्य के बावजूद कि CMOS द्विध्रुवी ट्रांजिस्टर के साथ निर्मित लॉजिक गेट्स की तुलना में मूल रूप से बहुत धीमा था।

सिंहावलोकन

एमओएस धातु-ऑक्साइड-सेमीकंडक्टर के लिए खड़ा है, जिस तरह से एमओएस-ट्रांजिस्टर मूल रूप से 1 9 70 के दशक से पहले मुख्य रूप से धातु के द्वार, आमतौर पर अल्युमीनियम के साथ बनाए गए थे। 1970 के बाद से, हालांकि, अधिकांश एमओएस सर्किटों ने पॉलीक्रिस्टलाइन सिलिकॉन से बने स्व-संरेखित गेट ्स का उपयोग किया है, जो फेयरचाइल्ड सेमीकंडक्टर में फेडेरिको फागिन द्वारा पहली बार विकसित की गई तकनीक है। इन सिलिकॉन गेट ्स का उपयोग अभी भी अधिकांश प्रकार के एमओएसएफईटी आधारित एकीकृत सर्किट में किया जाता है, हालांकि मेटल गेट्स (एल्यूमीनियम या ताँबा ) कुछ प्रकार के हाई स्पीड सर्किट जैसे उच्च प्रदर्शन माइक्रोप्रोसेसरों के लिए 2000 के दशक के प्रारंभ में फिर से दिखने लगे।

MOSFETs n-टाइप वृद्धि मोड ट्रांजिस्टर हैं, जो लॉजिक गेट आउटपुट और नेगेटिव सप्लाई वोल्टेज (आमतौर पर ग्राउंड) के बीच एक तथाकथित पुल-डाउन नेटवर्क (PDN) में व्यवस्थित होते हैं। एक रोकनेवाला ऊपर खींचो (अर्थात एक लोड जिसे एक रेसिस्टर के रूप में माना जा सकता है, नीचे देखें) को पॉजिटिव सप्लाई वोल्टेज और प्रत्येक लॉजिक गेट आउटपुट के बीच रखा जाता है। लॉजिक गेट#इन्वर्टर सहित कोई भी लॉजिक गेट, समानांतर और/या श्रृंखला सर्किट के नेटवर्क को डिजाइन करके कार्यान्वित किया जा सकता है, जैसे कि यदि बूलियन डेटा प्रकार इनपुट मानों के एक निश्चित संयोजन के लिए वांछित आउटपुट बूलियन तर्क (या बूलियन लॉजिक) है ), पीडीएन सक्रिय होगा, जिसका अर्थ है कि कम से कम एक ट्रांजिस्टर नकारात्मक आपूर्ति और आउटपुट के बीच वर्तमान पथ की अनुमति दे रहा है। यह लोड पर वोल्टेज ड्रॉप का कारण बनता है, और इस प्रकार आउटपुट पर कम वोल्टेज, शून्य का प्रतिनिधित्व करता है।

आर-खींचा गया सर्किट एक उल्टे NOR गेट की तरह काम करता है जो GND से बाहर निकल जाता है।

एक उदाहरण के रूप में, यहाँ एक तार्किक NOR गेट है जिसे योजनाबद्ध NMOS में लागू किया गया है। यदि इनपुट ए या इनपुट बी उच्च है (लॉजिक 1, = ट्रू), संबंधित एमओएस ट्रांजिस्टर आउटपुट और नकारात्मक आपूर्ति के बीच बहुत कम प्रतिरोध के रूप में कार्य करता है, जिससे आउटपुट कम हो जाता है (तर्क 0, = गलत)। जब ए और बी दोनों उच्च होते हैं, तो दोनों ट्रांजिस्टर प्रवाहकीय होते हैं, जो जमीन पर एक कम प्रतिरोध पथ बनाते हैं। एकमात्र मामला जहां आउटपुट उच्च होता है, जब दोनों ट्रांजिस्टर बंद होते हैं, जो तब होता है जब ए और बी दोनों कम होते हैं, इस प्रकार एनओआर गेट की सत्य तालिका को संतुष्ट करते हैं:

A B A NOR B
0 0 1
0 1 0
1 0 0
1 1 0

एक एमओएसएफईटी को प्रतिरोधी के रूप में संचालित करने के लिए बनाया जा सकता है, इसलिए पूरे सर्किट को एन-चैनल एमओएसएफईटी के साथ ही बनाया जा सकता है। NMOS परिपथ निम्न से उच्च की ओर संक्रमण के लिए धीमे होते हैं। उच्च से निम्न में संक्रमण करते समय, ट्रांजिस्टर कम प्रतिरोध प्रदान करते हैं, और आउटपुट पर कैपेसिटिव चार्ज बहुत तेज़ी से दूर हो जाता है (बहुत कम अवरोधक के माध्यम से संधारित्र को निर्वहन करने के समान)। लेकिन आउटपुट और सकारात्मक आपूर्ति रेल के बीच प्रतिरोध बहुत अधिक है, इसलिए निम्न से उच्च संक्रमण में अधिक समय लगता है (उच्च मूल्य अवरोधक के माध्यम से संधारित्र को चार्ज करने के समान)। कम मूल्य के प्रतिरोधक का उपयोग करने से प्रक्रिया में तेजी आएगी लेकिन स्थैतिक बिजली अपव्यय भी बढ़ेगा। हालांकि, फाटकों को तेजी से बनाने का एक बेहतर (और सबसे आम) तरीका है कमी-लोड NMOS तर्क | MOSFET के बजाय डिप्लेशन-मोड ट्रांजिस्टर का उपयोग करना | एन्हांसमेंट-मोड ट्रांजिस्टर लोड के रूप में। इसे डिप्लेशन-लोड NMOS लॉजिक कहा जाता है।

इतिहास

MOSFET का आविष्कार 1959 में बेल लैब्स में मिस्र के इंजीनियर मोहम्मद एम. अटाला और कोरियाई इंजीनियर डॉन कहंग द्वारा किया गया था और 1960 में प्रदर्शित किया गया था।[1] सेमीकंडक्टर उपकरण PMOS और NMOS दोनों उपकरणों का 20 µm प्रक्रिया के साथ निर्माण|20 माइक्रोन प्रक्रिया। हालाँकि, NMOS उपकरण अव्यावहारिक थे, और केवल PMOS प्रकार व्यावहारिक उपकरण थे।[2] 1965 में, चिह-तांग साह , ओटो लिस्टिको और ए.एस. फेयरचाइल्ड सेमीकंडक्टर में ग्रोव ने 10 µm प्रक्रिया के बीच चैनल लंबाई के साथ कई NMOS उपकरणों का निर्माण किया|8 माइक्रोन और 65 सुक्ष्ममापी।[3] आईबीएम में डेल एल. क्रिचलो और रॉबर्ट एच. डेनार्ड ने भी 1960 के दशक में एनएमओएस उपकरणों का निर्माण किया। पहला IBM NMOS उत्पाद 1 के साथ एक मेमोरी चिप था kibibit डेटा और 50–100 nanosecond पहूंच समय , जिसने 1970 के दशक की शुरुआत में बड़े पैमाने पर निर्माण में प्रवेश किया। इसने 1970 के दशक में पहले द्विध्रुवी जंक्शन ट्रांजिस्टर और फेराइट-कोर मेमोरी प्रौद्योगिकियों की जगह एमओएस सेमीकंडक्टर मेमोरी का नेतृत्व किया।[4] 1970 के दशक की शुरुआत में माइक्रोप्रोसेसर कालक्रम पीएमओएस प्रोसेसर थे, जो शुरू में शुरुआती माइक्रोप्रोसेसर उद्योग पर हावी थे।[5] 1973 में, NEC का μCOM-4 एक प्रारंभिक NMOS माइक्रोप्रोसेसर था, जिसे NEC बड़े पैमाने पर एकीकरण टीम द्वारा निर्मित किया गया था, जिसमें सोहिची सुजुकी के नेतृत्व में पांच शोधकर्ता शामिल थे।[6][7] 1970 के दशक के अंत तक, NMOS माइक्रोप्रोसेसरों ने PMOS प्रोसेसरों को पीछे छोड़ दिया था।[5]CMOS माइक्रोप्रोसेसरों को 1975 में पेश किया गया था।[5][8][9] हालाँकि, 1980 के दशक तक CMOS प्रोसेसर हावी नहीं हुए थे।[5]

CMOS प्रारंभ में NMOS तर्क से धीमा था, इस प्रकार 1970 के दशक में कंप्यूटर के लिए NMOS का अधिक व्यापक रूप से उपयोग किया जाने लगा।[10] इंटेल 5101 (1 किबिबिट स्टेटिक रैंडम-एक्सेस मेमोरी ) CMOS मेमोरी चिप (1974) का एक्सेस टाइम 800 था नैनोसेकंड,[11][12] जबकि उस समय की सबसे तेज़ NMOS चिप, Intel 2147 (4 kb SRAM) HMOS मेमोरी चिप (1976), का एक्सेस टाइम 55/70 था एनएस।[10][12]1978 में, तोशीकी मसुहारा के नेतृत्व में एक Hitachi अनुसंधान दल ने अपने HM6147 (4 kb SRAM) मेमोरी चिप, 3 µm प्रक्रिया के साथ निर्मित।[10][13] हिताची HM6147 चिप प्रदर्शन (55/70 ns एक्सेस) Intel 2147 HMOS चिप, जबकि HM6147 ने भी काफी कम बिजली की खपत की (15 milliamp ) 2147 (110 एमए)। तुलनीय प्रदर्शन और बहुत कम बिजली की खपत के साथ, ट्विन-वेल सीएमओएस प्रक्रिया ने अंततः 1980 के दशक में कंप्यूटरों के लिए सबसे आम सेमीकंडक्टर निर्माण प्रक्रिया के रूप में एनएमओएस को पीछे छोड़ दिया।[10]

1980 के दशक में, CMOS माइक्रोप्रोसेसरों ने NMOS माइक्रोप्रोसेसरों को पीछे छोड़ दिया।[5]


यह भी देखें

  • पीएमओएस तर्क
  • डिप्लेशन-लोड NMOS लॉजिक (HMOS (हाई डेंसिटी, शॉर्ट चैनल MOS), HMOS-II, HMOS-III, आदि कहलाने वाली प्रक्रियाओं सहित, डिप्लेशन-लोड NMOS लॉजिक सर्किट के लिए उच्च प्रदर्शन निर्माण प्रक्रियाओं का एक परिवार जो इंटेल द्वारा विकसित किया गया था 1970 के दशक के अंत में और कई वर्षों तक उपयोग किया गया। कई CMOS निर्माण प्रक्रियाएँ जैसे CHMOS , CHMOS-II, CHMOS-III, आदि, इन NMOS-प्रक्रियाओं से सीधे उतरीं।

संदर्भ

  1. "1960 - मेटल ऑक्साइड सेमीकंडक्टर (MOS) ट्रांजिस्टर का प्रदर्शन". The Silicon Engine. Computer History Museum.
  2. Lojek, Bo (2007). सेमीकंडक्टर इंजीनियरिंग का इतिहास. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  3. Sah, Chih-Tang; Leistiko, Otto; Grove, A. S. (May 1965). "थर्मल ऑक्सीकृत सिलिकॉन सतहों पर उलटा परतों में इलेक्ट्रॉन और छिद्र गतिशीलता". IEEE Transactions on Electron Devices. 12 (5): 248–254. Bibcode:1965ITED...12..248L. doi:10.1109/T-ED.1965.15489.
  4. Critchlow, D. L. (2007). "MOSFET स्केलिंग पर स्मरण". IEEE Solid-State Circuits Society Newsletter. 12 (1): 19–22. doi:10.1109/N-SSC.2007.4785536.
  5. 5.0 5.1 5.2 5.3 5.4 Kuhn, Kelin (2018). "CMOS and Beyond CMOS: Scaling Challenges". सीएमओएस अनुप्रयोगों के लिए उच्च गतिशीलता सामग्री. Woodhead Publishing. p. 1. ISBN 9780081020623.
  6. "1970 का दशक: माइक्रोप्रोसेसरों का विकास और विकास" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
  7. "एनईसी 751 (यूकॉम-4)". The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  8. Cushman, Robert H. (20 September 1975). "2-1/2-जेनरेशन μP's-$10 पार्ट जो लो-एंड मिनी की तरह परफॉर्म करते हैं" (PDF). EDN. Archived from the original (PDF) on 24 April 2016. Retrieved 15 September 2019.
  9. "CDP 1800 μP व्यावसायिक रूप से उपलब्ध है" (PDF). Microcomputer Digest. 2 (4): 1–3. October 1975.
  10. 10.0 10.1 10.2 10.3 "1978: डबल वेल फास्ट सीएमओएस एसआरएएम (हिताची)" (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on 5 July 2019. Retrieved 5 July 2019.
  11. "सिलिकॉन गेट MOS 2102A". Intel. Retrieved 27 June 2019.
  12. 12.0 12.1 "इंटेल उत्पादों की कालानुक्रमिक सूची। उत्पादों को तिथि के अनुसार क्रमबद्ध किया जाता है।" (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007.
  13. Masuhara, Toshiaki; Minato, O.; Sasaki, T.; Sakai, Y.; Kubo, M.; Yasui, T. (1978). एक हाई-स्पीड, लो-पॉवर Hi-CMOS 4K स्टैटिक रैम. 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXI. pp. 110–111. doi:10.1109/ISSCC.1978.1155749.


इस पेज में लापता आंतरिक लिंक की सूची

  • उलटा परत (अर्धचालक)
  • शक्ति का अपव्यय
  • उत्सर्जक-युग्मित तर्क
  • तर्क परिवार
  • एकीकृत परिपथ
  • दावों कहंग
  • सेमीकंडक्टर डिवाइस का निर्माण
  • अर्धचालक निर्माण प्रक्रिया

बाहरी कड़ियाँ

श्रेणी:तर्क परिवार श्रेणी:MOSFETs श्रेणी: अरब आविष्कार श्रेणी: मिस्र के आविष्कार श्रेणी: दक्षिण कोरियाई आविष्कार