परिकर्माष्टक- मूल संक्रिया
परिचय
अंकगणित संख्याओं का उपयोग करके गणना से संबंधित है। पाटीगणित , अंकगणित और ज्यामिति के लिए संस्कृत शब्द है। पाटीगणित शब्द पाटी(स्लेट) और गणित (गणित) को मिलाकर बना है। चूँकि एक स्लेट के बोर्ड का उपयोग करके गणित किया जाता था , इसलिए इसे पाटीगणित कहा जाता था। संख्याओं का उपयोग करने वाले सभी लेन-देन के लिए जोड़, घटाव, गुणा, भाग, वर्ग आदि के मूल संक्रिया की आवश्यकता होगी। प्राचीन भारतीय गणितज्ञों ने एक साथ आठ मूलभूत संक्रियाओं का उल्लेख किया है जिन्हें परिकर्माष्टक कहा जाता है।
परिभाषा
परिकर्म का अर्थ है अंकगणितीय संक्रियाएं और अष्टक का अर्थ है आठ का समूह। परिकर्माष्टक आठ बुनियादी कार्यों का प्रतीक है।
आठ मूल संक्रियाएँ इस प्रकार हैं:
- संकलनम् (योग)
- व्यावकलनम् (घटाव)
- गुणन (गुणा)
- भाजन (भाग)
- वर्गः (वर्ग)
- वर्गमूल (वर्गमूल)
- घन (क्यूबिंग) और
- घन-मूल (घनमूल)
जोड़ और घटाव सभी गणनाओं का आधार बनते हैं। नीचे दिए गए श्लोक में भास्कर प्रथम का उल्लेख है।
संयोगभेदा गुणनागतानि शुद्धेश्च भागो गतमूलमुक्तम् ।
व्याप्तं समीक्ष्योपचयक्षयाभ्यां विद्यादिदं द्व्यात्मकमेव शास्त्रम् ॥ (गणितपाद में आर्यभटीय भाष्य, पृष्ठ 43)
"सभी अंकगणितीय संचालन दो श्रेणियों में हल होते हैं, हालांकि आमतौर पर चार माने जाते हैं। दो मुख्य श्रेणियां वृद्धि और कमी हैं। जोड़ बढ़ाया जाता है और घटाव घटाया जाता है। संचालन की ये दो किस्में पूरे गणित में व्याप्त हैं। गुणन और वृद्धि (वर्ग आदि) विशेष प्रकार के जोड़ हैं; और विभाजन और प्रत्यावर्तन(वर्गमूल, आदि) विशेष प्रकार के घटाव हैं। वास्तव में प्रत्येक गणितीय संक्रिया को वृद्धि या कमी के रूप में मान्यता दी जाएगी। इसलिए इस पूरे विज्ञान को सही मायने में इन दोनों से मिलकर ही जाना जाना चाहिए।"
संकलन और व्यावकलन (जोड़ और घटाव)
जोड़ गणित में पहली मूल संक्रिया है। घटाव जोड़ का उल्टा है।
आर्यभट द्वितीय (950) जोड़ को "कई संख्याओं में से एक बनाना जोड़ है" के रूप में परिभाषित करते हैं।
आर्यभट द्वितीय (950) घटाव को "सर्वधन (कुल) से (कुछ संख्या का) निकालना घटाव है" के रूप में परिभाषित करते हैं । जो बचता है उसे शेष (बचा हुआ अंश)" कहा जाता है।
भास्कर द्वितीय ने लीलावती पर अपने काम में इन कार्यों का उल्लेख किया है।
कार्यः क्रमादुत्क्रमतोऽथवाऽङ्कयोगो यथास्थानकमन्तरं वा ॥ (लीलावती , बनाम 12, पृ.12)
"जोड़ या घटाव (दिए गए नंबरों में अंकों का) स्थान के अनुसार दाएं से बाएं या बाएं से दाएं किया जाना है।"
दी गई संख्याओं को एक दूसरे के नीचे इस प्रकार लिखिए कि अंक उनके स्थानीय मान के अनुरूप हों। फिर इकाइयों के स्थान से शुरू करके अंकों को जोड़ें या घटाएँ, बाद में दहाई पर जाएँ, और इसी तरह आगे भी।
जोड़ के लिए संस्कृत नाम - योग (जोड़), संयोग (योग), संयोजना (एक साथ जुड़ना), संयुति (योग), संयुति (योग), संकलन (एक साथ बनाना)।
घटाव के लिए संस्कृत नाम - व्युतकलिता (अलग किया गया), व्युतकलाना (अलग करना), शोधन (समाशोधन), पाटन (गिरने का कारण), वियोग (पृथक्करण), शेष (अवशेष) और अनतर (अंतर) का उपयोग शेष के लिए किया गया है।