वितरण ट्रांसफार्मर
वितरण ट्रांसफॉर्मर या सेवा ट्रांसफॉर्मर एक ट्रांसफॉर्मर है जो विद्युत ऊर्जा वितरण प्रणाली में अवश्यकतानुसार वोल्टेज परिवर्तन प्रदान करता है, वितरण लाइनों में उपयोग किए जाने वाले वोल्टेज को ग्राहक के अवश्यकतानुसार प्रदान किया जाता है।[1] ट्रांसफॉर्मर के आविष्कार ने प्रत्यावर्ती बिजली वितरण को संभव बनाया; वितरण ट्रांसफॉर्मर का उपयोग करने वाली संस्था को 1882 में प्रदर्शित किया गया था।
यदि उपयोगिता को स्तम्भ पर लगाया जाता है, तो उन्हें पोल-माउंट ट्रांसफॉर्मर कहा जाता है। यदि वितरण लाइनें जमीनी स्तर या भूमिगत पर स्थित हैं, तो वितरण ट्रांसफॉर्मर कंक्रीट से बने पैड पर लगाए जाते हैं और इस्पात के बक्सों में बंद कर दिए जाते हैं, इस प्रकार के वितरण टैप पैडमाउंट ट्रांसफॉर्मर के रूप में जाना जाता है।
वितरण ट्रांसफॉर्मर की रेटिंग आमतौर पर 200 वोल्ट-एम्पीयर से कम होती है,[2] हालांकि कुछ राष्ट्रीय मानक 5000 किलोवोल्ट-एम्पीयर तक की इकाइयों को वितरण ट्रांसफॉर्मर के रूप में वर्णित करने की अनुमति देते हैं। चूंकि वितरण ट्रांसफॉर्मर दिन में 24 घंटे सक्रिय रहते हैं ( जब वे कोई भार नहीं उठाते हैं), उनके बनावट में लोह हानियाँ को कम करने की महत्वपूर्ण भूमिका होती है। चूंकि वे आमतौर पर पूर्ण भार पर काम नहीं करते हैं, इसलिए उन्हें कम भार पर अधिकतम दक्षता के लिए बनाया गया है। बेहतर दक्षता के लिए, इन ट्रांसफार्मरों में वोल्टेज विनियमन को न्यूनतम रखा जाना चाहिए। इसलिए उन्हें छोटे रिसाव प्रतिघात के लिए बनाया गया है।[3]
प्रकार
वितरण ट्रांसफार्मरों को उनके कारकों के आधार पर विभिन्न श्रेणियों में वर्गीकृत किया गया है जैसे:
- बढ़ते स्थान - पोल, पैड, भूमिगत कोष्ठ
- इन्सुलेशन का प्रकार - तरल-डूबे हुए या शुष्क-प्रकार
- चरणों की संख्या - एकल-चरण या तीन-चरण
- वोल्टेज वर्ग
- बुनियादी आवेग इन्सुलेशन स्तर (बीआईएल)।
प्रयोग करें
वितरण ट्रांसफॉर्मर आमतौर पर एक सर्विस ड्रॉप पर स्थित होते हैं, जहां उपयोगिता पोल या भूमिगत बिजली लाइनों को ग्राहक के भवन तक तार को ले जाया जाता हैं। उनका उपयोग अक्सर बस्तियों के बाहर सुविधाओं को बिजली आपूर्ति के लिए किया जाता है, जैसे कि 30 किलोवोल्ट-एम्पीयर से कम वोल्टेज पर अलग-अलग घर, खेत या पंपिंग स्टेशन है। एक अन्य अनुप्रयोग ए.सी. विद्युतीकृत रेलवे के ऊपर तारों में बिजली की आपूर्ति की जाती है। इस मामले में एकल चरण वितरण ट्रांसफार्मर का उपयोग किया जाता है।[4] एकल वितरण ट्रांसफार्मर द्वारा प्रदान किए गए बिजली एक क्षेत्र में ग्राहकों की संख्या के आधार पर भिन्न होती है। शहरी क्षेत्रों में एक ही ट्रांसफाॅर्मर से कई घरों को बिजली प्रदान किया जा सकता है। मुख्य वोल्टेज के आधार पर, ग्रामीण क्षेत्रों में वितरण के लिए प्रति ग्राहक को एक ट्रांसफार्मर की आवश्यकता हो सकती है। बड़े वाणिज्यिक या औद्योगिक परिसर में एक से अधिक वितरण ट्रांसफॉर्मर होंगे। शहरी क्षेत्रों और आस-पड़ोस में जहां प्राथमिक वितरण लाइनें भूमिगत रहतीं हैं वंहा पैडमाउंट ट्रांसफॉर्मर , कंक्रीट पैड पर लगे बंद धातु के बक्सों में प्रयोग किया जाता है। कई बड़ी इमारतों में प्राथमिक वितरण वोल्टेज पर विद्युत सेवा प्रदान की जाती है। इन भवनों में निम्न वोल्टेज के उद्देश्यों के पूर्ति के लिए बेसमेंट में ग्राहक के स्वामित्व वाले ट्रांसफॉर्मर होते हैं।[4] वितरण ट्रांसफॉर्मर पवन खेतों के बिजली संग्रह नेटवर्क में भी पाए जाते हैं, जहां वे प्रत्येक पवन चक्की से एक सबस्टेशन तक बिजली प्रदान करते हैं जो कई मील (किलोमीटर) दूर हो सकता है।[5]
कनेक्शन
दोनों पोल-माउंटेड और पैड-माउंटेड ट्रांसफॉर्मर ओवरहेड या भूमिगत वितरण लाइनों में प्रवहित उच्च 'प्राथमिक' वोल्टेज को भवन के अंदर 'द्वितीयक' या 'उपयोग' हेतु कम वोल्टेज में परिवर्तित करते हैं। प्राथमिक वितरण तार तीन-फेज विद्युत शक्ति का उपयोग करते हैं | मुख्य वितरण लाइनों में हमेशा तीन 'हॉट' तार मेन और एक वैकल्पिक न्यूट्रल होता है। उत्तर अमेरिकी प्रणाली में, जहां एकल-चरण ट्रांसफॉर्मर केवल एक तार से जुड़ते हैं,वंहा छोटी 'पार्श्व' लाइनें सड़कों की किनारों पर शाखाओं में बँटती हैं, और उनमें केवल एक या दो 'हॉट' चरण तार शामिल हो सकते हैं | (जब केवल एकल चरण तार होता है, तो वंहा न्यूट्रल तार का उपयोग हमेशा वापसी पथ के रूप में प्रयोग किया जाएगा।) प्राथमिक क्षत्रों में उपयोग किए जाने वाले मानक वितरण के आधार पर वोल्टेज प्रदान किय जाते हैं; स्थानीय वितरण अभ्यास और मानकों के आधार पर वोल्टेज को 2.3 किलोवोल्ट से लेकर लगभग 35 किलोवोल्ट तक कम हो सकता हैं; सामान्य वोल्टेज के लिय 11 किलोवोल्ट (50 हर्टेज़ सिस्टम) और 13.8 किलोवोल्ट (60 हर्टेज़ सिस्टम) का उपयोग किया जाता है, लेकिन कई अन्य वोल्टेज सामान्य हैं। उदाहरण के लिए, संयुक्त राज्य अमेरिका में, सबसे सामान्य वोल्टेज 12.47 किलोवोल्ट है, जिसका लाइन-टू-ग्राउंड वोल्टेज 7.2 किलोवोल्ट है,इसमें 7.2 किलोवोल्ट फेज-टू-न्यूट्रल वोल्टेज है,जो स्प्लिट-फेज सेकेंडरी साइड पर 240 V का ठीक 30 गुना है।
प्राथमिक
उच्च वोल्टेज प्राथमिक वाइंडिंग को केस के शीर्ष पर बुशिंग (विद्युत) में लाया जाता है।
- एकल चरण ट्रांसफार्मर, आमतौर पर उत्तरी अमेरिकी प्रणाली में उपयोग किए जाते हैं, जो दो अलग-अलग प्रकार के कनेक्शनों के साथ ओवरहेड वितरण तारों से जुड़े होते हैं:
- वाई - वाई वितरण सर्किट पर, 'वाई' या 'फेज से न्यूट्रल' ट्रांसफॉर्मर का उपयोग किया जाता है। एकल चरण वाई ट्रांसफार्मर में आमतौर पर शीर्ष पर केवल एक झाड़ी(बुशिंग) होती है, जो तीन प्राथमिक चरणों में से एक से जुड़ी होती है। प्राइमरी कुंडली का दूसरा सिरा ट्रांसफॉर्मर केस से जुड़ा होता है, जो वाई सिस्टम के न्यूट्रल वायर से होते हुए ग्राउंडेड भी होता है| एक वाई वितरण प्रणाली को प्राथमिकता दी जाती है क्योंकि ट्रांसफॉर्मर लाइन पर असंतुलित भार पेश करते हैं जो न्यूट्रल तार में धाराओं का कारण बनते हैं और फिर ग्राउंडेड होते हैं। लेकिन डेल्टा वितरण प्रणाली में असंतुलित भार होने से तीन चरण तारों पर वोल्टेज में भिन्नता पैदा कर सकता है।
- डेल्टा - डेल्टा वितरण सर्किट पर, 'डेल्टा' या 'फेज टू फेज' ट्रांसफार्मर का उपयोग किया जाता है। एक सिंगल फेज डेल्टा ट्रांसफॉर्मर दो बुशिंगऔर तीन प्राथमिक तारों में से दो से जुड़े होते हैं, इसलिए प्राइमरी कुंडली के लिय फेज -टू-फेज वोल्टेजआवश्यक है। यह न्यूट्रल तारो के माध्यम से प्राथमिक धारा को वापस करने से बचता है जो पृथ्वी की क्षमता के पास अपने वोल्टेज को रखने के लिए ठोस रूप से ग्राउंडेड होनी चाहिए | चूंकि न्यूट्रल तार भी ग्राहकों को प्रदान किया जाता है,जो कैलिफोर्निया जैसे शुष्क क्षेत्र में एक बड़ा सुरक्षा लाभ है जहां मिट्टी की चालकता कम होती है। इसका मुख्य नुकसान उच्च लागत है, उदाहरण के लिए, शाखा सर्किट पर भी कम से कम दो इन्सुलेटेड 'हॉट' चरण तारों की आवश्यकता होती है। इसके अतिरिक्त एक और छोटा नुकसान यह है कि यदि प्राथमिक चरणों में से केवल एक को ऊपर की ओर से काट दिया जाता है तो भी उसमे धारा प्रवाहित होती रहेगी क्योंकि ट्रांसफॉर्मर इसके माध्यम से धारा वापस करने की कोशिश करते हैं, और यह कम कर रहे कर्मियों के लिए खतरनाक हो सकता है।
- तीन-चरण माध्यमिक शक्ति प्रदान करने वाले ट्रांसफॉर्मर, जो यूरोपीय प्रणाली में आवासीय सेवा के लिए उपयोग किए जाते हैं, उनमे से तीन प्राथमिक चरण तारे तीन प्राथमिक कुंडली से जुड़ी होती हैं। कुंडली लगभग एक 'वाई' विन्यास में जुड़े होते हैं, जिसमें तीन कुंडली जुड़े और ग्राउंडेड होते हैं।
ट्रांसफार्मर हमेशा सुरक्षात्मक फ्यूज (विद्युत) और डिस्कनेक्ट बदलना के माध्यम से प्राथमिक वितरण लाइनों से जुड़ा होता है। पोल-माउंटेड ट्रांसफार्मर के लिए यह आमतौर पर 'फ्यूज कटआउट' होता है। बिजली की खराबी से फ़्यूज़ पिघल जाता है और डिवाइस टूट कर खुल जाता है जिससे परेशानी का दृश्य संकेत मिलता है। इसे मैन्युअल रूप से भी खोला जा सकता है, जबकि लाइन को लाइनवर्कर (व्यवसाय) द्वारा इंसुलेटेड गर्म छड़ी का उपयोग करके सक्रिय किया जाता है। कुछ मामलों में पूरी तरह से स्व-संरक्षित ट्रांसफार्मर का उपयोग किया जाता है, जिसमें एक परिपथ वियोजक होता है, इसलिए फ़्यूज्ड कटआउट की आवश्यकता नहीं होती है।
द्वितीयक
कम वोल्टेज की द्वितीयक कुंडली ट्रांसफार्मर के तीन या चार टर्मिनलों से जुड़ी होती हैं।
- उत्तरी अमेरिकी आवासों और छोटे व्यवसायों में, द्वितीयक कुंडली का विभाजन-चरण हमेशा 120/240 वोल्ट प्रणाली होती है। 240 वोल्ट द्वितीयक कुंडली सेंटर-टैप होती है और सेंटर न्यूट्रल वायर ग्राउंड होते है, जिससे दो एंड कंडक्टर सेंटर टैप के संबंध में हॉट हो जाते हैं और एक दूसरे के साथ 180 डिग्री फेज से बाहर हो जाते हैं। ये तीन तार सर्विस ड्रॉप से होते हुए बिल्डिंग के अंदर बिजली मीटर और सर्विस पैनल तक जाते हैं। हॉट तार और न्यूट्रल के बीच लोड जोड़ने से 120 वोल्ट का उत्पादन होता है, जिसका उपयोग प्रकाश विद्युत परिपथ के लिए किया जाता है। दोनों हॉट तारों को आपस में जोड़ने पर 240 वोल्ट उत्पन्न होता है, जिसका उपयोग एयर कंडीशनर, ओवन, ड्रायर और चार्जिंग_स्टेशन जैसे भारी भार के लिए किया जाता है।
- यूरोप और इस प्रणाली का उपयोग करने वाले अन्य देशों में, द्वितीयक कुंडली में अक्सर तीन चरण 400Y/230 प्रणाली होती है। तीन 230 वोल्ट की द्वितीयक कुंडली होती हैं,जो प्रत्येक को प्राथमिक चरणों में से किसी एक से जुड़ी प्राथमिक वाइंडिंग से शक्ति प्राप्त होती है। प्रत्येक द्वितीयक वाइंडिंग का एक सिरा एक 'न्यूट्रल' तार से जुड़ा होता है, जो जमीन से जुड़ा होता है। न्यूट्रल के साथ 3 सेकेंडरी वाइंडिंग के दूसरे सिरे को सर्विस ड्रॉप से सर्विस पैनल में लाया जाता है। 230 वोल्ट भार तीन चरण तारों मेसे किसी एक और न्यूट्रल से जुड़े हुए है, चूंकि चरण एक दूसरे के संबंध में 120 डिग्री हैं|उत्तर अमेरिकी विभाजन चरण प्रणाली में 2 * 120V = 240V की तुलना में किन्हीं दो चरणों के बीच वोल्टेज sqrt(3) * 230 वोल्ट = 400वोल्ट है। जबकि व्यक्तिगत उत्तरी अमेरिकी निवासों में तीन चरण की शक्ति लगभग अनसुनी है, यह यूरोप में एयर कंडीशनर और इलेक्ट्रिक वाहन चार्जर जैसे भारी भार के लिए सामान्य है।
निर्माण
वितरण ट्रांसफॉर्मर में शीट सिलिकॉन स्टील (ट्रांसफार्मर स्टील) के लैमिनेशन से बना एक चुंबकीय कोर होता है जो या रोल के साथ चिपका होता है या फिर स्टील की पट्टियों के साथ बंधा होता है, जिसके चारों ओर प्राथमिक और द्वितीयक तार लपेटे होते हैं। इस प्रकार के कोर निर्माण "कोर हानियों" को कम करने के लिए निर्माण किया जाता है, और कोर में गर्मी के रूप में चुंबकीय ऊर्जा का अपव्यय होता है, जो उपयोगिता ग्रिड में बिजली हानि का आर्थिक रूप से महत्वपूर्ण कारण बनता है| "कोर हानिया" दो प्रभावों के कारण होता है; इस्पात में शैथिल्य हानि और भंवर धाराओं | सिलिकॉन स्टील में कम शैथिल्य हानि होती है और प्लास्टिक आवरणयुक्त वस्तु भंवर धाराओं को कोर में बहने से रोकता है, जो स्टील के प्रतिरोध में शक्ति को नष्ट कर देता है। विशिष्ट वितरण ट्रांसफार्मर की दक्षता लगभग 98 और 99 प्रतिशत के बीच होती है।[6][7] जहां बड़ी संख्या में ट्रांसफॉर्मर मानक निर्माण किय जाते हैं, वहां पर "सी-आकार" कोर निर्माण के लिए सस्ता होता है। एक स्टील की पट्टी को पूर्व के चारों ओर लपेटकर,आकार में दबाकर फिर दो सी-आकार के हिस्सों में काटा जाता है, जो तांबे की कुंडली पर फिर से संयोजित होते हैं।[8]
प्राथमिक कुंडली को तामचीनी लेपित तांबे या एल्यूमीनियम तार से लपेटा जाता है और उच्च धारा, कम वोल्टेज के सेकेंडरी कुंडली को एल्यूमीनियम या तांबे के मोटे रिबन का उपयोग करके लपेटा जाता है। कुंडली मोमिया कागज के साथ विद्युत रोधी होती है। राल को ठीक करने के लिए पूरी संयोजन को बेक किया जाता है और फिर पाउडर कोटिंग से भरे स्टील के टैंक में डूबा दिया जाता है, जिसे बाद में ट्रांसफॉर्मर ऑयल (या अन्य इंसुलेटिंग लिक्विड) से भर दिया जाता है, जो निष्क्रिय और गैर-प्रवाहकीय होता है। ट्रांसफार्मर का तेल कुंडली को ठंडा और इन्सुलेट करता है, और उन्हें नमी से बचाता है। किसी भी ट्रांसफॉर्मर में नमी को पूर्ण रूप से हटाने के लिए उसके निर्माण के दौरान टैंक को अस्थायी रूप से खाली कर दिया जाता है, ऐसा न करने से आर्किंग का कारण बनता है, और शीर्ष पर गैसकेट के साथ सील कर दिया जाता है।[9]
सामान्य रूप से उपयोग किय जाने वाले वितरण ट्रांसफार्मर में पॉलीक्लोराइनेटेड बाइफिनाइल (पीसीबी) तरल होते है। जो पर्यावरण और जानवरों पर प्रतिकूल प्रभाव डालते हैं, इसलिए इन पर प्रतिबंध लगा दिया गया है। अन्य आग प्रतिरोधी तरल पदार्थ जैसे सिलिकॉन का उपयोग किया जाता है जहां तरल से भरे ट्रांसफार्मर को घर के अंदर इस्तेमाल किया जाना चाहिए। कुछ वनस्पति तेलों को ट्रांसफॉर्मर में तेल के रूप में उपयोग किया जाता है; इनमें उच्च अग्नि बिंदु का लाभ होता है और ये पर्यावरण में पूरी तरह से जैवनिम्नीकरणीय होते हैं।[10]
पोल-माउंटेड ट्रांसफॉर्मर में अक्सर सर्ज अरेस्टर या सुरक्षात्मक फ्यूज लिंक जैसी सहायक उपकरण शामिल होती हैं। एक स्व-संरक्षित ट्रांसफार्मर में एक आंतरिक फ़्यूज़ और सर्ज अरेस्टर शामिल होता है; अन्य ट्रांसफार्मर में ये घटक टैंक के बाहर अलग से लगे होते हैं।[11] पोल-माउंटेड ट्रांसफॉर्मर में लग्स हो सकते हैं जो पोल पर सीधे माउंटिंग की अनुमति देते हैं, या पोल पर बोल्ट किए गए क्रॉसआर्म्स पर लगाए जा सकते हैं। एरियल ट्रांसफॉर्मर, लगभग 75 किलोवोल्ट-एम्पीयर से बड़ा हो सकता है, जो एक या एक से अधिक खंभों द्वारा समर्थित प्लेटफॉर्म पर लगाया जा सकता है।[12] बिजली आपूर्ति करने वाली तीन-चरण क्रमशः तीन समान ट्रांसफार्मर का उपयोग कर सकती है |
नीचे-क्रम की स्थापना के लिए निर्माण किए गए ट्रांसफार्मर को पानी में आवधिक जलमग्नता के लिए निर्माण किया जा सकता है।[13] वितरण ट्रांसफार्मर में एक ऑफ-लोड टैप परिवर्तक शामिल होता है,जो ग्राहक के वोल्टेज को लंबी या भारी लोड वाली लाइनों पर वांछित सीमा के भीतर प्राथमिक और माध्यमिक वोल्टेज के बीच के अनुपात को मामूली समायोजन करता है |[citation needed] पैड-माउंटेड ट्रांसफॉर्मर के आंतरिक भागों को हानियो से बचाने के लिए सुरक्षित लॉक, बोल्ट 'और ग्राउंडेड धातु से बन्द होते हैं,और बंद धातुओ में वर्णित फ़्यूज़, आइसोलेटिंग स्विच, लोड-ब्रेक बुशिंग और अन्य सहायक उपकरण भी शामिल हो सकते हैं। वितरण प्रणालियों के लिए पैड-माउंटेड ट्रांसफॉर्मर आमतौर पर लगभग 100 से 2000 किलोवोल्ट-एम्पीयर तक होते हैं, हालांकि कुछ बड़ी इकाइयों का भी उपयोग किया जाता है[citation needed]
स्थापना
अमेरिका में वितरण ट्रांसफार्मर को ज्यादातर लकड़ी के खंभों पर बाहर स्थापित किए जाते हैं, जबकि यूरोप में उन्हें सामान्यतः इमारतों पर स्थापित किय जाते है | अगर फीडिंग लाइन ओवरहेड हैं,तो यह टावर की तरह दिखते हैं| यदि ट्रांसफार्मर तक जाने वाली सभी लाइनें भूमिगत हैं, तो उन्हें संरक्षित करने के लिय एक बड़े बाक्स के आकार की छोटी इमारतों का उपयोग किया जाता है। फिर भी यूरोप में खंभों पर स्थित वितरण ट्रांसफार्मर का उपयोग ग्रामीण क्षेत्रों में किया जाता है, जिसका पोल आमतौर पर कंक्रीट या लोहे से बना होता है,जो ट्रांसफार्मर के वजन को सहन कर सके है।
यह भी देखें
संदर्भ
- ↑ Harlow 2012, p. 3-4.
- ↑ Bakshi 2009, p. 1-24.
- ↑ Bakshi 2009, p. 1-25.
- ↑ 4.0 4.1 Harlow 2012, p. 3-17.
- ↑ Harlow 2012, p. 3-10.
- ↑ De Keulenaer et al. 2001
- ↑ Kubo, T.; Sachs, H.; Nadel, S. (2001). Opportunities for New Appliance and Equipment Efficiency Standards. American Council for an Energy-Efficient Economy. p. 39, fig. 1. Retrieved June 21, 2009.
- ↑ Harlow 2012, p. 3-3.
- ↑ "What are Efficient Transmission Materials and Equipments?". Digital Journal.
- ↑ Harlow 2012, p. 3-5.
- ↑ Pansini 2005, p. 63.
- ↑ Pansini 2005, p. 61.
- ↑ Harlow 2012, p. 3-9.
ग्रन्थसूची
- Bakshi, V.B.U.A. (2009). Transformers & Induction Machines. Technical Publications. ISBN 9788184313802. Retrieved 2014-01-14.
- De Keulenaer, Hans; Chapman, David; Fassbinder, Stefan; McDermott, Mike (2001). The Scope for Energy Saving in the EU through the Use of Energy-Efficient Electricity Distribution Transformers (PDF). 16th International Conference and Exhibition on Electricity Distribution (CIRED 2001). Institution of Engineering and Technology. doi:10.1049/cp:20010853. Retrieved 10 July 2014.
- Harlow, James H. (2012). Electric Power Transformer Engineering, Third Edition, Volume 2. CRC Press. ISBN 978-1439856291.
- Pansini, Anthony J. (2005). Guide to Electrical Power Distribution Systems. The Fairmont Press, Inc. ISBN 088173506X.
Distribution transformer
Distribution transformer
Distribution transformer
Distribution transformer
Distribution transformer
Distribution transformer
Distribution transformer
Distribution transformer
Distribution transformer