असिम्प्टोटिक विश्लेषण

From Vigyanwiki
Revision as of 11:04, 8 February 2023 by alpha>Nitya (text)

गणितीय विश्लेषण में, एसिम्प्टोटिक विश्लेषण, जिसे एसिम्प्टोटिक्स के रूप में भी जाना जाता है, सीमा (गणित) व्यवहार का वर्णन करने की विधि है।

उदाहरण के रूप में, मान लीजिए कि हम फ़ंक्शन f (n) के गुणों में रूचि रखते हैं क्योंकि n बहुत बड़ा हो जाता है। यदि f(n) = n2 + 3n, तो n बहुत बड़ा हो जाता है, पद 3n, n2 की तुलना में महत्वहीन हो जाता है। फलन f(n) को "अस्पर्शोन्मुख रूप से n2के समतुल्य, जैसा कि n → ∞ कहा जाता है। इसे अक्सर प्रतीकात्मक रूप से f (n) ~ n2,के रूप में लिखा जाता है, जिसे f(n), के लिए n2 असिम्प्टोटिक है के रूप में पढ़ा जाता है।

एक महत्वपूर्ण उपगामी परिणाम का एक उदाहरण प्रधान संख्या प्रमेय है। मान लीजिए π(x) प्राइम-काउंटिंग फंक्शन को दर्शाता है (जो सीधे स्थिर पीआई से संबंधित नहीं है), यानी π(x) उन अभाज्य संख्याओं की संख्या है जो x से कम या उसके बराबर हैं।

एसिम्प्टोटिक विश्लेषण आमतौर पर कंप्यूटर विज्ञान में एल्गोरिदम के विश्लेषण के हिस्से के रूप में उपयोग किया जाता है और बड़े ओ नोटेशन के संदर्भ में व्यक्त किया जाता है।

परिभाषा

औपचारिक रूप से, दिए गए फलन f (x) और g(x), हम एक द्विआधारी संबंध को परिभाषित करते हैं

अगर और केवल अगर (डी ब्रुजन 1981, §1.4)
प्रतीक ~ टिल्ड है। संबंध x के कार्यों के समुच्चय पर एक तुल्यता संबंध है; फलन f और g को असम्बद्ध रूप से समतुल्य कहा जाता है। f और g का प्रांत कोई भी समुच्चय हो सकता है जिसके लिए सीमा परिभाषित है: उदा. वास्तविक संख्याएं, जटिल संख्याएं, सकारात्मक पूर्णांक।

इसी संकेतन का उपयोग किसी सीमा तक जाने के अन्य तरीकों के लिए भी किया जाता है: उदा. x → 0, x ↓ 0, |x| → 0. सीमा पार करने का तरीका अक्सर स्पष्ट रूप से नहीं बताया जाता है, अगर यह संदर्भ से स्पष्ट है।

हालांकि उपरोक्त परिभाषा साहित्य में आम है, यह समस्याग्रस्त है अगर g(x) शून्य असीम रूप से अक्सर होता है क्योंकि x सीमित मूल्य पर जाता है। इस कारण से, कुछ लेखक वैकल्पिक परिभाषा का उपयोग करते हैं। वैकल्पिक परिभाषा, छोटे-ओ अंकन में, यह है कि f ~ g यदि और केवल यदि

यह परिभाषा पूर्व परिभाषा के समतुल्य है यदि g(x) सीमित मूल्य के कुछ पड़ोस (गणित) में शून्य नहीं है।[1][2]

गुण

अगर और , जैसा , तो निम्नलिखित होल्ड करें:

  • , हर असली के लिए r
  • अगर

इस तरह के गुण कई बीजगणितीय अभिव्यक्तियों में असीमित-समतुल्य कार्यों को स्वतंत्र रूप से आदान-प्रदान करने की अनुमति देते हैं।ध्यान दें कि वे गुण केवल और केवल तभी सही हैं अनंत की ओर जाता है (दूसरे शब्दों में, वे गुण केवल पर्याप्त रूप से बड़े मूल्य के लिए लागू होते हैं )। अगर अनंत की ओर नहीं जाता है, बल्कि इसके बजाय कुछ मनमाना परिमित स्थिरांक होता है , तो उपरोक्त परिभाषा से निम्न सीमा:

≠ 1, कुछ स्थिरांक के लिए

इसी तरह:

≠ 1, कुछ स्थिरांक के लिए

इस प्रकार, वे संबंधित कार्य अब असिम्प्टोटिक-समतुल्य नहीं हैं और गुणों के ऊपर लागू नहीं किए जा सकते हैं।

इसके लिए एक सरल उदाहरण, आइए और , हम देख सकते हैं कि:

हालाँकि:

इस तरह, और के रूप में असम्बद्ध रूप से समकक्ष नहीं हैं .

असिम्प्टोटिक सूत्रों के उदाहरण

  • क्रमगुणित
    —यह स्टर्लिंग का सन्निकटन है
  • विभाजन फलन धनात्मक पूर्णांक n के लिए, विभाजन फलन, p(n), पूर्णांक n को धनात्मक पूर्णांकों के योग के रूप में लिखने के तरीकों की संख्या देता है, जहाँ योग के क्रम पर विचार नहीं किया जाता है।
  • हवादार फलन ऐयरी फलन ऐ(x), अवकल समीकरण y″xy = 0; का एक समाधान है; भौतिकी में इसके कई अनुप्रयोग हैं।
  • हैंकेल कार्य करता है

असिम्प्टोटिक विस्तार

एक परिमित क्षेत्र f(x) का असिम्प्टोटिक विस्तार एक श्रृंखला (गणित) के संदर्भ में उस फ़ंक्शन की एक अभिव्यक्ति है, जिसके आंशिक योग आवश्यक रूप से अभिसरण नहीं करते हैं, लेकिन ऐसा है कि कोई भी प्रारंभिक आंशिक योग f के लिए एक असिम्प्टोटिक सूत्र प्रदान करता है। विचार यह है कि क्रमिक शब्द f के विकास के क्रम का एक सटीक विवरण प्रदान करते हैं।

प्रतीकों में, इसका मतलब है कि हमारे पास है लेकिन और प्रत्येक निश्चित k के लिए। की परिभाषा को ध्यान में रखते हुए प्रतीक, अंतिम समीकरण का अर्थ है बिग ओ नोटेशन में # लिटिल-ओ नोटेशन, यानी, से बहुत छोटा है रिश्ता इसका पूरा अर्थ लेता है अगर सभी k के लिए, जिसका अर्थ है एक असिम्प्टोटिक पैमाने बनाएं। उस मामले में, कुछ लेखक नोटेशन लिखने का दुरुपयोग कर सकते हैं कथन को निरूपित करने के लिए हालांकि किसी को सावधान रहना चाहिए कि यह इसका मानक उपयोग नहीं है प्रतीक, और यह कि यह दी गई परिभाषा के अनुरूप नहीं है § Definition.

वर्तमान स्थिति में, यह संबंध वास्तव में चरण k और k−1 के संयोजन से अनुसरण करता है; घटाकर से एक मिलता है अर्थात।

यदि असिम्प्टोटिक विस्तार अभिसरण नहीं करता है, तो तर्क के किसी विशेष मूल्य के लिए एक विशेष आंशिक योग होगा जो सर्वोत्तम सन्निकटन प्रदान करता है और अतिरिक्त शब्द जोड़ने से सटीकता कम हो जाएगी। इस इष्टतम आंशिक योग में आमतौर पर अधिक शर्तें होंगी क्योंकि तर्क सीमा मान तक पहुंचता है।

असिम्प्टोटिक विस्तार के उदाहरण

  • गामा फलन
  • घातीय अभिन्न
  • त्रुटि फलन
    कहाँ m!! डबल फैक्टोरियल है।

काम किया उदाहरण

असिम्प्टोटिक विस्तार अक्सर तब होता है जब एक औपचारिक अभिव्यक्ति में एक साधारण श्रृंखला का उपयोग किया जाता है जो अभिसरण के अपने डोमेन के बाहर मूल्यों को लेने के लिए मजबूर करता है। उदाहरण के लिए, हम साधारण श्रृंखला से शुरुआत कर सकते हैं

बाईं ओर की अभिव्यक्ति पूरे जटिल तल पर मान्य है , जबकि दाहिनी ओर केवल के लिए अभिसरित होता है . से गुणा करना और दोनों पक्षों को एकीकृत करने से प्रतिफल प्राप्त होता है
बाईं ओर के समाकल को चरघातांकी समाकल के रूप में व्यक्त किया जा सकता है। प्रतिस्थापन के बाद दाहिने हाथ की ओर अभिन्न , को गामा फलन के रूप में पहचाना जा सकता है। दोनों का मूल्यांकन करने पर, व्यक्ति असिम्प्टोटिक विस्तार प्राप्त करता है
यहाँ, t के किसी भी गैर-शून्य मान के लिए दाहिनी ओर स्पष्ट रूप से अभिसारी नहीं है। हालांकि, टी को छोटा रखते हुए, और शब्दों की एक सीमित संख्या के दाईं ओर श्रृंखला को छोटा करके, एक व्यक्ति के मूल्य के लिए काफी अच्छा सन्निकटन प्राप्त कर सकता है . स्थानापन्न और यह ध्यान में रखते हुए इस लेख में पहले दिए गए असिम्प्टोटिक विस्तार का परिणाम है।

असिम्प्टोटिक वितरण

गणितीय आँकड़ों में, असिम्प्टोटिक वितरण वितरण एक काल्पनिक वितरण है जो एक अर्थ में वितरण के अनुक्रम का "सीमित" वितरण है। एक वितरण i = 1, …, n कुछ सकारात्मक पूर्णांक nके लिए यादृच्छिक चर Zi का एक आदेशित सेट है। एक असिम्प्टोटिक वितरण i का एक आदेशित सेट है। एक असिम्प्टोटिक वितरण n अनंत है।

असिम्प्टोटिक वितरण का एक विशेष मामला तब होता है जब देर से प्रविष्टियाँ शून्य पर जाती हैं - अर्थात, Zi के रूप में 0 पर जाएं i अनंत तक जाता है। असिम्प्टोटिक वितरण के कुछ उदाहरण केवल इस विशेष मामले को संदर्भित करते हैं।

यह एक असिम्प्टोटिक फ़ंक्शन की धारणा पर आधारित है जो एक स्थिर मान (एसिम्प्टोट) तक पहुंचता है क्योंकि स्वतंत्र चर अनंत तक जाता है; इस अर्थ में "स्वच्छ" का अर्थ है कि किसी भी वांछित निकटता एप्सिलॉन के लिए स्वतंत्र चर का कुछ मान होता है जिसके बाद फ़ंक्शन कभी भी स्थिरांक से एप्सिलॉन से अधिक भिन्न नहीं होता है।

असिम्प्टोटिक एक सीधी रेखा है जो एक वक्र तक पहुँचती है लेकिन कभी मिलती या पार नहीं करती है। अनौपचारिक रूप से, कोई व्यक्ति "अनंत पर" असिम्प्टोटिक से मिलने वाले वक्र के बारे में बात कर सकता है, हालांकि यह एक सटीक परिभाषा नहीं है। समीकरण में x बढ़ने पर y परिमाण में मनमाने ढंग से छोटा हो जाता है।

अनुप्रयोग

कई गणितीय विज्ञान में असिम्प्टोटिक विश्लेषण का उपयोग किया जाता है। आँकड़ों में, असिम्प्टोटिक सिद्धांत नमूना आँकड़ों के संभाव्यता वितरण के सीमित अनुमान प्रदान करता है, जैसे किसंभावना-अनुपात परीक्षण आँकड़ा और विचलन (सांख्यिकी) का अपेक्षित मूल्य। हालांकि, असिम्प्टोटिक सिद्धांत नमूना आँकड़ों के परिमित-नमूना वितरण के मूल्यांकन की एक विधि प्रदान नहीं करता है। सन्निकटन सिद्धांत के तरीकों द्वारा गैर-असिम्प्टोटिक सीमाएं प्रदान की जाती हैं।

अनुप्रयोगों के उदाहरण निम्नलिखित हैं।

  • अनुप्रयुक्त गणित में, असिम्प्टोटिक विश्लेषण का उपयोग अनुमानित समीकरण समाधान के लिए संख्यात्मक तरीकों का निर्माण करने के लिए किया जाता है।
  • गणितीय आँकड़ों और संभाव्यता सिद्धांत में, असिम्प्टोटिक का उपयोग यादृच्छिक चर और अनुमानकों के दीर्घकालिक या बड़े-नमूना व्यवहार के विश्लेषण में किया जाता है।
  • एल्गोरिदम के विश्लेषण में कंप्यूटर विज्ञान में, एल्गोरिदम के प्रदर्शन पर विचार करना। भौतिक प्रणालियों का व्यवहार, एक उदाहरण सांख्यिकीय यांत्रिकी है।
  • दुर्घटना विश्लेषण में जब एक निश्चित समय और स्थान में बड़ी संख्या में क्रैश काउंट के साथ काउंट मॉडलिंग के माध्यम से क्रैश के कारण की पहचान की जाती है।

असिम्प्टोटिक विश्लेषण सामान्य और आंशिक अंतर समीकरणों की खोज के लिए एक महत्वपूर्ण उपकरण है जो वास्तविक दुनिया की घटनाओं के गणितीय मॉडलिंग में उत्पन्न होता है।[3] तरल प्रवाह को नियंत्रित करने वाले पूर्ण नेवियर-स्टोक्स समीकरणसे सीमा परत समीकरणों की व्युत्पत्ति एक उदाहरण है। कई मामलों में, असिम्प्टोटिक विस्तार एक छोटे पैरामीटर की शक्ति में होता है, ε: सीमा परत के मामले में, यह समस्या की एक विशिष्ट लंबाई के पैमाने पर सीमा परत की मोटाई का आयामी विश्लेषण अनुपात है। दरअसल, गणितीय मॉडलिंग में असिम्प्टोटिक विश्लेषण के अनुप्रयोग अक्सर[3]एक गैर-आयामी पैरामीटर के आसपास केंद्रित होते हैं, जो समस्या के पैमाने पर विचार के माध्यम से दिखाया गया है, या छोटा माना जाता है।

स्पर्शोन्मुख विस्तार आम तौर पर कुछ इंटीग्रल (लाप्लास की विधि, सैडल-पॉइंट विधि, स्टीपेस्ट डिसेंट की विधि) या प्रायिकता वितरण (एडगेवर्थ श्रृंखला) के सन्निकटन में उत्पन्न होते हैं। क्वांटम क्षेत्र सिद्धांत में फेनमैन रेखांकन असिम्प्टोटिक विस्तार का एक और उदाहरण है जो अक्सर अभिसरण नहीं करते हैं।

यह भी देखें


टिप्पणियाँ

  1. "Asymptotic equality", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  2. Estrada & Kanwal (2002, §1.2)
  3. 3.0 3.1 Howison, S. (2005), Practical Applied Mathematics, Cambridge University Press


संदर्भ


बाहरी संबंध