अंशों का क्षेत्र

From Vigyanwiki
Revision as of 23:02, 12 February 2023 by alpha>Anju

अमूर्त बीजगणित में, समाकलन प्रभावक्षेत्र के भिन्नों का क्षेत्र सबसे छोटा गणित में क्षेत्र है जिसमें इसे अंतर्निहित (एम्बेडिंग) किया जा सकता है। भिन्नों के क्षेत्र का निर्माण पूर्णांकों के समाकलन प्रभावक्षेत्र और परिमेय संख्याओं के क्षेत्र के बीच के संबंध पर आधारित है। सहज रूप से, इसमें समाकलन प्रभावक्षेत्र तत्वों के बीच अनुपात होते हैं।

भिन्नों का क्षेत्र के कभी-कभी द्वारा दर्शाया जाता है या , और निर्माण को कभी-कभी भिन्न क्षेत्र, भागफलों का क्षेत्र, या भागफल का क्षेत्र भी कहा जाता है . सभी चार सामान्य उपयोग में हैं, लेकिन भागफल वलय के साथ भ्रमित नहीं होना चाहिए, जो एक बहुत ही अलग अवधारणा है। क्रमविनिमेय वलय के लिए जो एक समाकलन प्रभावक्षेत्र नहीं है, अनुरूप निर्माण को स्थानीयकरण (कम्यूटेटिव बीजगणित) या भागफल की वलय कहा जाता है।

परिभाषा

समाकलन प्रभावक्षेत्र दिया और दे रहा है , हम एक तुल्यता संबंध को परिभाषित करते हैं जैसे भी हो जब कभी भी . हम के समतुल्य वर्ग को निरूपित करते हैं द्वारा . तुल्यता की यह धारणा परिमेय संख्याओं से प्रेरित है , जिनके पास अंतर्निहित वलय (गणित) के संबंध में समान संपत्ति है पूर्णांकों का है।

तब भिन्न का क्षेत्र समुच्चय होता है द्वारा दिए गए जोड़ के साथ

और गुणा द्वारा दिया गया

कोई जांच कर सकता है कि ये ऑपरेशन अच्छी तरह से परिभाषित हैं और किसी भी समाकलन प्रभावक्षेत्र के लिए , वास्तव में एक क्षेत्र है। विशेष रूप से, के लिए , का गुणक प्रतिलोम उम्मीद के मुताबिक है: .

की एम्बेडिंग में नक्शे प्रत्येक में अंश को किसी भी शून्य के लिए (तुल्यता वर्ग पसंद से स्वतंत्र है ). यह पहचान पर आधारित है .

के भिन्नों का क्षेत्र निम्नलिखित अमूर्त्वभौमिक संपत्ति की विशेषता है:

अगर से एक इंजेक्शन रिंग समरूपता है एक मैदान में , तो वहाँ एक अद्वितीय वलय समरूपता मौजूद है जो फैलता है .

इस निर्माण की एक श्रेणी सिद्धांत व्याख्या है। होने देना समाकलन प्रभावक्षेत्र और इंजेक्शन रिंग मैप्स की श्रेणी (गणित) बनें। से ऑपरेटर क्षेत्रों की श्रेणी के लिए जो प्रत्येक समाकलन प्रभावक्षेत्र को उसके अंश क्षेत्र में ले जाता है और प्रत्येक समरूपता को क्षेत्रों पर प्रेरित मानचित्र (जो अमूर्त्वभौमिक संपत्ति द्वारा मौजूद है) के लिए क्षेत्रों की श्रेणी से समावेशन फ़ंक्टर का आसन्न फ़ंक्टर है . इस प्रकार फ़ील्ड्स की श्रेणी (जो एक पूर्ण उपश्रेणी है) की एक चिंतनशील उपश्रेणी है .

समाकलन प्रभावक्षेत्र की भूमिका के लिए गुणक पहचान की आवश्यकता नहीं है; यह निर्माण किसी भी शून्य रिंग कम्यूटेटिव आरएनजी (बीजगणित) पर लागू किया जा सकता है शून्येतर शून्य विभाजक के बिना। एम्बेडिंग द्वारा दिया गया है किसी भी शून्य के लिए .[1]


उदाहरण

  • पूर्णांक # बीजीय_गुणों के वलय के भिन्नों का क्षेत्र परिमेय संख्या का क्षेत्र है: .
  • होने देना गॉसियन पूर्णांकों का वलय हो। तब , गॉसियन परिमेय का क्षेत्र।
  • किसी क्षेत्र के भिन्नों का क्षेत्र कैनोनिक रूप से क्षेत्र के लिए समरूपता है।
  • एक क्षेत्र दिया , एक अनिश्चित में बहुपद वलय के भिन्नों का क्षेत्र (जो एक समाकलन प्रभावक्षेत्र है), कहा जाता हैfield of rational functions, परिमेय भिन्नों का क्षेत्र, या परिमेय व्यंजकों का क्षेत्र[2][3][4][5] और निरूपित किया जाता है .

सामान्यीकरण

स्थानीयकरण

किसी भी क्रमविनिमेय वलय के लिए और कोई गुणक सेट में , एक वलय का स्थानीयकरण क्रमविनिमेय वलय है जिसमें भिन्न होते हैं

साथ और , अब किधर के बराबर है अगर और केवल अगर मौजूद है ऐसा है कि .

इसके दो विशेष मामले उल्लेखनीय हैं:

  • अगर एक प्रमुख आदर्श का पूरक है , तब भी अंकित किया जाता है
    कब एक समाकलन प्रभावक्षेत्र है और शून्य आदर्श है, के भिन्नों का क्षेत्र है .
  • अगर में गैर-शून्य-भाजक का सेट है , तब को कुल भागफल वलय कहा जाता है।
    एक समाकलन प्रभावक्षेत्र का कुल भागफल वलय इसके भिन्नों का क्षेत्र होता है, लेकिन कुल भागफल वलय को किसी भी क्रमविनिमेय वलय के लिए परिभाषित किया जाता है।

ध्यान दें कि इसकी अनुमति है 0 शामिल करने के लिए, लेकिन उस स्थिति में तुच्छ वलय होगी।

भिन्नों का अर्धक्षेत्र

शून्य विभाजक के साथ एक [[क्रमविनिमेय मोटी हो जाओ]] के भिन्नों का सेमीफ़ील्ड सबसे छोटा सेमीफ़ील्ड है जिसमें यह एंबेडिंग हो सकता है।

कम्यूटेटिव सेमिरिंग के भिन्नों के सेमीफ़ील्ड के तत्व तुल्यता वर्ग के रूप में लिखे गए हैं

साथ और में .

यह भी देखें

संदर्भ

  1. Hungerford, Thomas W. (1980). बीजगणित (Revised 3rd ed.). New York: Springer. pp. 142–144. ISBN 3540905189.
  2. Vinberg, Ėrnest Borisovich (2003). A course in algebra. American Mathematical Society. p. 131. ISBN 978-0-8218-8394-5.
  3. Foldes, Stephan (1994). Fundamental structures of algebra and discrete mathematics. Wiley. p. 128. ISBN 0-471-57180-6.
  4. Grillet, Pierre Antoine (2007). "3.5 Rings: Polynomials in One Variable". Abstract algebra. Springer. p. 124. ISBN 978-0-387-71568-1.
  5. Marecek, Lynn; Mathis, Andrea Honeycutt (6 May 2020). Intermediate Algebra 2e. OpenStax. §7.1.