संयुग्मी तत्व (क्षेत्र सिद्धांत)

From Vigyanwiki
Revision as of 13:02, 3 February 2023 by alpha>Indicwiki (Created page with "{{About|the conjugation between the roots of a polynomial|other uses|Conjugation (disambiguation){{!}}Conjugation}} {{refimprove|date=December 2010}} गणित में,...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, विशेष क्षेत्र सिद्धांत (गणित) में, एक बीजीय तत्व के संयुग्मी तत्व या बीजगणितीय संयुग्मα, एक फील्ड एक्सटेंशन पर L/Kन्यूनतम बहुपद (क्षेत्र सिद्धांत) की जड़ें हैं pK,α(x) का α ऊपर K. संयुग्म तत्वों को आमतौर पर संदर्भों में संयुग्म कहा जाता है जहां यह अस्पष्ट नहीं है। सामान्य रूप से α स्वयं के संयुग्मों के समुच्चय में शामिल हैα.

समान रूप से, के संयुग्म α के चित्र हैं α के क्षेत्र automorphisms के तहत L के तत्वों को छोड़ दें K. दो परिभाषाओं की समानता गैलोज सिद्धांत के शुरुआती बिंदुओं में से एक है।

अवधारणा जटिल संयुग्मन को सामान्य करती है, क्योंकि बीजीय संयुग्मन खत्म हो जाता है एक सम्मिश्र संख्या में स्वयं संख्या और उसके सम्मिश्र संयुग्म होते हैं।

उदाहरण

संख्या एक (संख्या) के घनमूल हैं:

बाद की दो जड़ें संयुग्मी तत्व हैं Q[i3] न्यूनतम बहुपद के साथ


गुण

यदि K एक बीजगणितीय रूप से बंद फ़ील्ड C के अंदर दिया गया है, तो संयुग्मों को C के अंदर ले जाया जा सकता है। यदि ऐसा कोई C निर्दिष्ट नहीं है, तो कोई अपेक्षाकृत छोटे क्षेत्र L में संयुग्मों को ले सकता है। L के लिए सबसे छोटा संभव विकल्प विभाजन करना है पी के कश्मीर पर क्षेत्रK,α, α युक्त। यदि L, K का कोई सामान्य विस्तार है जिसमें α है, तो परिभाषा के अनुसार इसमें पहले से ही ऐसा विभाजन क्षेत्र शामिल है।

दिया गया तो K का एक सामान्य विस्तार L, Galois समूह Aut(L/K) = G के साथ, और α युक्त, G में g के लिए कोई भी तत्व g(α) α का एक संयुग्म होगा, क्योंकि automorphism g p की जड़ें भेजता है पी की जड़ों के लिए। इसके विपरीत α का कोई संयुग्मी β इस रूप का है: दूसरे शब्दों में, G संयुग्मों पर सामूहिक क्रिया (गणित)#प्रकार_की_क्रियाएं करता है। यह इस प्रकार है कि K(α) न्यूनतम बहुपद की इर्रेड्यूबिलिटी द्वारा K(β) के लिए K-आइसोमॉर्फिक है, और फ़ील्ड F और F का कोई भी आइसोमोर्फिज्म है।'जो बहुपद p को p से मैप करता है'F और p पर p के विभाजन वाले क्षेत्रों के एक समरूपता तक बढ़ाया जा सकता है'एफ पर', क्रमश।

संक्षेप में, α के संयुग्मी तत्व K के किसी भी सामान्य विस्तार L में पाए जाते हैं जिसमें K(α) होता है, जो ऑट (L/K) में g के लिए तत्वों g(α) के सेट के रूप में होता है। प्रत्येक तत्व की उस सूची में दोहराने की संख्या वियोज्य डिग्री है [L:K(α)]sep.

लियोपोल्ड क्रोनकर के एक प्रमेय में कहा गया है कि यदि α एक गैर-शून्य बीजगणितीय पूर्णांक है जैसे कि जटिल संख्याओं में α और इसके सभी संयुग्मों का अधिकतम 1 पर पूर्ण मान है, तो α एकता की जड़ है। इसके मात्रात्मक रूप हैं, संयुग्म के सबसे बड़े निरपेक्ष मान पर अधिक सटीक सीमा (डिग्री के आधार पर) बताते हुए, जिसका अर्थ है कि एक बीजगणितीय पूर्णांक एकता का मूल है।

संदर्भ

  • David S. Dummit, Richard M. Foote, Abstract algebra, 3rd ed., Wiley, 2004.


बाहरी कड़ियाँ

  • Weisstein, Eric W. "Conjugate Elements". MathWorld.