वोल्टाई पाइल

From Vigyanwiki
Revision as of 16:32, 15 February 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)
तांबा-जस्ता वोल्टिक समूह का योजनाबद्ध आरेख चित्रित है। तांबे और जस्ता चक्र को कार्डबोर्ड द्वारा पृथक किया गया या लवण (विद्युत अपघट्य) में भिगोने वाले अन्तरालक को अनुभव किया गया था। वोल्टा के मूल समूह में तल पर अतिरिक्त जस्ता चक्र और शीर्ष पर अतिरिक्त तांबा चक्र थी। इन्हें बाद में अनावश्यक दिखाया गया।
जैसा, इटली में वोल्टा के घर के समीप वोल्टियन टेम्पल (वोल्टा मंदिर) में प्रदर्शन पर वोल्टिक समूह
वोल्टिक समूह, विश्वविद्यालय इतिहास संग्रहालय, पाविया विश्वविद्यालय।

वोल्टिक समूह प्रथम विधुत बैटरी थी जो विधुत परिपथ में लगातार विद्युत प्रवाह प्रदान कर सकती थी। इसका आविष्कार इतालवी रसायनज्ञ एलेसेंड्रो वोल्टा द्वारा किया गया था, जिन्होंने सन् 1799 में अपने प्रयोगों को प्रकाशित किया था। इसके आविष्कार का वोल्टा और लुइगी गालवानी के मध्य तर्क का अनुमान लगाया जा सकता है, वोल्टा के साथी इतालवी वैज्ञानिक जिन्होंने मेंढक के पैरों पर अपने प्रयोगों के लिए कुख्याति प्राप्त की थी।[1] वोल्टिक समूह ने तब विलियम निकोलसन (केमिस्ट) और एंथनी कार्लिसल (1800) और रासायनिक तत्वों सोडियम (1807) की खोज या पृथकाव द्वारा ऑक्सीजन और हाइड्रोजन (1807) में जल के विद्युत अपघटन (इलेक्ट्रोलिसिस) सहित अन्य खोजों की श्रृंखला को सक्षम किया, हम्फ्री डेवी द्वारा पोटैशियम(K) (1807), कैल्शियम(Ca) (1808), बोरॉन(B) (1808), बेरियम(Ba) (1808), स्ट्रोंटियम(Sr) (1808), और मैगनीशियम(Mg) (1808) में प्रकाशित किया गया।[2][3]

सन् 1870 के दशक में डाइनेमो (विद्युत जनरेटर) के आगमन तक वोल्टा (जैसे डेनियल सेल और ग्रोव सेल) से संबंधित बैटरी द्वारा संचालित 19वीं सदी का विद्युत उद्योग संचालित था।

वोल्टा का आविष्कार लुइगी गालवानी ने सन् 1780 के दशक में इसकी खोज पर कार्य किया गया था कि दो धातुओं का विधुत परिपथ और मेंढक के पैर को प्रतिक्रिया देने के लिए प्रयोग किया जाता है। वोल्टा ने सन् 1794 में प्रदर्शित किया कि जब दो धातुओं और लवण से लथपथ वस्त्र या कार्डबोर्ड को विधुत परिपथ में व्यवस्थित किया जाता है तब वे विद्युत प्रवाह का उत्पादन करते हैं। सन् 1800 में वोल्टा ने कुल विधुत के रेल के इंजन के बल को बढ़ाने के लिए लवण में भिगोए गए वस्त्र या कार्डबोर्ड द्वारा पृथक किए गए ताँबा (चांदी) और जिंक चक्र (इलेक्ट्रोड) के कई जोड़े के समूह को प्रस्तावित किया।[4] जब ऊपर और नीचे के तार संपर्क से जुड़े होते है, तब विद्युत प्रवाह (विधुत) वोल्टिक समूह और सम्बंधित तार के माध्यम से प्रवाहित होता है। वोल्टिक समूह, कई वैज्ञानिक उपकरणों के साथ मिलकर प्रयोग करते थे जो एलेसेंड्रो वोल्टा से संबंधित थे, यह पाविया विश्वविद्यालय के विश्वविद्यालय इतिहास संग्रहालय में संरक्षित हैं, जहां वोल्टा ने सन् 1778 से 1819 तक शिक्षा प्रदान की थी।[5]

अनुप्रयोग

एलेसेंड्रो वोल्टा से जोसेफ बैंक को भेजे गए पत्र से विभिन्न विन्यासों में वोल्टिक समूह का चित्रण।

20 मार्च 1800 को, एलेसेंड्रो वोल्टा ने लंडन रॉयल सोसाइटी को अपने उपकरण का प्रयोग करके विद्युत प्रवाह के उत्पादन की कार्य-पद्धति का वर्णन करने के लिए लिखा।[6] वोल्टिक समूह के बारे में सीखने के पश्चात्, विलियम निकोलसन (केमिस्ट) और एंथोनी कार्लिसल ने इसका प्रयोग जल के इलेक्ट्रोलीज़ की खोज के लिए प्रयोग किया। हम्फ्री डेवी ने दिखाया कि वैद्युत वाहक बल, जो वोल्टिक सेल वाले विधुत परिपथ के माध्यम से विद्युत प्रवाह को चलाता है, वह रासायनिक प्रतिक्रिया के कारण होता है, न कि दो धातुओं के मध्य अंतर के कारण होता है। उन्होंने रसायनों को विघटित करने और नए रसायनों का उत्पादन करने के लिए वोल्टिक समूह का भी प्रयोग किया। विलियम हाइड वोलस्टन ने दिखाया कि वोल्टिक समूह से विधुत के घर्षण द्वारा उत्पादित विधुत के समान प्रभाव डालती है। सन् 1802 में वासिली व्लादिमिरोविच पेट्रोव ने विद्युत आर्क प्रभावों की खोज और अनुसंधान में वोल्टिक समूह का प्रयोग किया।

हम्फ्री डेवी और एंड्रयू क्रॉसे वोल्टिक समूह को विकसित करने वाले प्रथम व्यक्तियों में से थे।[7] डेवी ने कार्बन चाप -निर्वहन को प्रदर्शित करने के लिए सन् 1808 में गौरवपूर्ण संस्था के लिए बनाए गए 2000-जोड़ी के समूह का प्रयोग किया[8] और पांच नए तत्वों को पृथक किया जैसे बेरियम(Ba), कैल्शियम(Ca), बोरॉन(B), स्ट्रोंटियम(Sr) और मैग्नीशियम(Mg) इत्यदि।[9]

विद्युत्-रसायन

चूँकि वोल्टा का मानना था कि विद्बयुत-रसायन बल दो धातुओं के मध्य संपर्क पर होता है, वोल्टा के समूह में इस पृष्ठ पर चित्रित आधुनिक रचना की तुलना में भिन्न रचना थी। उनके समूह में तांबे के संपर्क में, शीर्ष पर तांबे का अतिरिक्त चक्र था और नीचे की तरफ जस्ता की अतिरिक्त चक्र, तांबे के संपर्क में था।[10] वोल्टा के कार्य और अपने संरक्षक हम्फ्री डेवी के विद्युत चुंबकत्व के कार्य पर विस्तार करते हुए, माइकल फैराडे ने विधुत के साथ अपने प्रयोगों में प्रबंधक और वोल्टिक समूह दोनों का प्रयोग किया। फैराडे का मानना था कि उस समय सभी क्षेत्र में विधुत का अध्ययन किया जा रहा था। (वोल्टिक, चुंबकीय, थर्मल और पशु) इस सिद्धांत को सिद्ध करने के लिए उनके कार्य ने उन्हें विद्युत्-रसायन के दो अनुलेख का प्रस्ताव करने के लिए प्रेरित किया, जो तीस साल पूर्व वोल्टा द्वारा निर्धारित दिन के वर्तमान वैज्ञानिक मान्यताओं के साथ सीधे संघर्ष में स्थित थे।[11] अध्ययन के इस क्षेत्र की समझने में उनके योगदान के कारण, फैराडे और वोल्टा दोनों को विद्युत -विज्ञान के पिता के के रूप माना जाता है।[12] वोल्टा के कार्य का वर्णन करने के लिए ऊपर प्रयोग किए जाने वाले इलेक्ट्रोड और विद्युत अपघट्य शब्द फैराडे के कारण हैं।[13]

विधुत वाहक बल

समूह की शक्ति उसके विधुत वाहक बल या ईएमएफ के संदर्भ में व्यक्त की जाती है जो वोल्ट में दी जाती है। एलेसेंड्रो वोल्टा के संपर्क तनाव के सिद्धांत ने माना कि ईएमएफ जो वोल्टिक सेल वाले विधुत परिपथ के माध्यम से विद्युत प्रवाह को चलाता है, वह दो धातुओं के मध्य संपर्क में होता है। वोल्टा ने विद्युत अपघट्य पर विचार नहीं किया, जो सामान्यतः उनके महत्वपूर्ण होने के लिए प्रयोगों में लवण था। चूंकि, रसायनज्ञों ने जल्द ही अनुभव किया कि विद्युत अपघट्य में जल समूह की रासायनिक प्रतिक्रियाओं में सम्मलित था और तांबे या चांदी के इलेक्ट्रोड से हाइड्रोजन गैस का विकास हुआ।[2][14][15][16]

विद्युत अपघट्य द्वारा पृथक किए गए जस्ता और तांबे के इलेक्ट्रोड के साथ कोशिका की समझ आधुनिक परमाणु में निम्नलिखित है। जब सेल बाहरी विधुत परिपथ के माध्यम से विद्युत प्रवाह प्रदान करता है, तब जस्ता एनोड की सतह पर धात्विक जस्ता का ऑक्सीकरण हो जाता है और विद्युत आवेशित आयनों (Zn2+) के रूप में विद्युत अपघट्य में घुल जाता है जो 2 नकारात्मक रूप से आवेशित इलेक्ट्रॉन को छोड़कर (2
e
) धातु में पीछे क्रिया करता है।

एनोड (ऑक्सीकरण): Zn → Zn2 + + 2
e

इस प्रतिक्रिया को रिडॉक्स कहा जाता है। चूँकि जिंक(Zn) विद्युत अपघट्य में प्रवेश कर रहा है, तब दो सकारात्मक रूप से चार्ज हाइड्रोजन आयनों (H+) विद्युत अपघट्य से तांबे के कैथोड की सतह पर दो अति सूक्ष्म परमाणु को स्वीकार करके कम हो जाते हैं और अपरिवर्तित हाइड्रोजन अणु (H)2 बनाते हैं।

कैथोड (कमी): 2 H+ + 2
e
→ H2

इस प्रतिक्रिया को आक्सीकरण कहा जाता है। हाइड्रोजन के अणुओं को बनाने के लिए तांबे(Cu) का प्रयोग किए जाने वाले अति सूक्ष्म परमाणु को बाहरी तार या विधुत परिपथ द्वारा बनाया जाता है जो इसे जस्ते से जोड़ता है। जिस कारण कमी प्रतिक्रिया द्वारा तांबे की सतह पर गठित हाइड्रोजन अणु अंततः हाइड्रोजन गैस के रूप में बुलबुले से दूर हो जाते हैं।

यह देखा जा सकता है कि वैश्विक विद्युत रासायनिक प्रतिक्रिया शीघ्र विधुत रसायन युगल कॉपर(Cu) में सम्मलित नहीं है ताँबा(Cu) कैथोड के अनुरूप cu2+ (बैगनी/लाल) इस प्रकार ताँबा धातु चक्र मात्र विधुत परिपथ में अति सूक्ष्म परमाणु के परिवहन के लिए रासायनिक रूप से अक्रिय भव्य धातु सुचालक के रूप में यहां कार्य करती है और जलीय चरण की प्रतिक्रिया में रासायनिक रूप से भाग नहीं लेती है। ताँबा हाइड्रोजन-विकास की प्रतिक्रिया के लिए उत्प्रेरक के रूप में कार्य करता है, जो बाहरी विधुत परिपथ के माध्यम से वर्तमान प्रवाह के बिना जस्ता इलेक्ट्रोड पर समान रूप से उत्तम प्रकार से कार्य करता है। ताँबा इलेक्ट्रोड को प्रणाली में किसी भी पर्याप्त रूप से निष्क्रिय और उत्प्रेरक सक्रिय धातु सुचालक सिल्वर(Ag), प्लैटिनम(Pt), स्टेनलेस स्टील, ग्रेफाइट, इत्यदि द्वारा प्रतिस्थापित किया जाता है। जिस कारण वैश्विक प्रतिक्रिया निम्नानुसार लिखी जा सकती है।

Zn + 2H+ → Zn2+ + H2

यह विद्युत रसायन श्रंखला संकेत समूह के माध्यम से प्रयोगी रूप से शेलीबध्य है।

( एनोड: ऑक्सीकरण) Zn | Zn2+ || 2H+ | H2 | Cu (कैथोड: कमी)

जिसमें हर समय ऊर्ध्वाधर प्रत्येक बार अंतराफलक का प्रतिनिधित्व करता है। जो दोगुने लंबवत पर प्रत्येक बार छिद्र कार्डबोर्ड चक्र को संलग्न करने वाले विद्युत अपघट्य के अनुरूप अन्त्रप्रष्ठ का प्रतिनिधित्व करता है।

जब कोई तार्किक समूह से धारा नहीं खींची जाती है, तो प्रत्येक सेल, जस्ता / विद्युत अपघट्य / ताँबा से मिलकर, लवण विद्युत अपघट्य के साथ 0.76 वोल्ट उत्पन्न करता है। जो समूह में कोशिकाओं से विभवान्तर जोड़ते हैं, जिस कारण ऊपर दिए गए आरेख में छह कोशिकाएं विधुत वाहक बल में 4.56 वोल्ट उत्पन्न करती हैं।

शुष्क समूह

19 वीं शताब्दी के प्रारंभ और सन् 1830 के दशक के मध्य उच्च-विभवान्तर शुष्क समूह का आविष्कार किया गया था, जो गीले वोल्टिक समूह के विधुत के स्रोत को निर्धारित करने के प्रयास में और विशेष रूप से वोल्टा की संपर्क तनाव की परिकल्पना का समर्थन करने के लिए प्रयोग की जाती है। वास्तविक रूप से वोल्टा ने स्वयं समूह के साथ प्रयोग किया, जिसकी त्रुटि से कार्डबोर्ड चक्र सूखने की अधिक संभावना थी।

सन् 1802 में जोहान विल्हेम रिटर को प्रकाशित करने वाला प्रथम अस्पष्ट पत्रिका में था, किन्तु अगले दशक में इसे नई खोज के रूप में बार -बार घोषित किया गया था। शुष्क समूह का रूप ज़ाम्बोनी समूह है।सन् 1814 में फ्रांसिस रोनाल्ड ने यह अनुभव करने वाले प्रथम व्यक्तियों में से थे। जिन्होंने शुष्क समूह में धातु-से-धातु संपर्क के अतिरिक्त रासायनिक प्रतिक्रिया के माध्यम से भी कार्य किया था। जब जंग उत्पन्न होने वाली बहुत छोटी धाराओं के कारण जंग दिखाई नहीं दे रही थी।[17][18]

शुष्क समूह को आधुनिक शुष्क सेल के पूर्वज के रूप में संदर्भित किया जाता है।

यह भी देखें

संदर्भ

  1. "The Voltaic Pile | Distinctive Collections Spotlights". libraries.mit.edu (in English). Retrieved 2023-01-24.
  2. 2.0 2.1 Decker, Franco (January 2005). "Volta and the 'Pile'". Electrochemistry Encyclopedia. Case Western Reserve University. Archived from the original on 2012-07-16.
  3. Russell, Colin (August 2003). "Enterprise and electrolysis..." Chemistry World.
  4. Mottelay, Paul Fleury (2008). Bibliographical History of Electricity and Magnetism (Reprint of 1892 ed.). Read Books. p. 247. ISBN 978-1-4437-2844-7.
  5. "Sala Volta". Musei Unipv. Retrieved 21 August 2022.
  6. Volta, Alessandro (1800). "On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds". Philosophical Transactions of the Royal Society of London (in français). 90: 403–431. doi:10.1098/rstl.1800.0018. A partial translation of this paper is available online; see "Volta and the Battery". Retrieved 2012-12-01. A complete translation was published in Dibner, Bern (1964). Alessandro Volta and the Electric Battery. Franklin Watts. pp. 111–131. OCLC 247967.
  7. Encyclopædia Britannica, 1911 edition, Volume V09, Page 185
  8. Tracking Down the Origin of Arc Plasma Science. II. Early Continuous Discharges
  9. Kenyon, T. K. (2008). "Science and Celebrity: Humphry Davy's Rising Star". Chemical Heritage Magazine. 26 (4): 30–35. Retrieved 22 March 2018.
  10. Cecchini, R.; Pelosi, G. (April 1992). "Alessandro Volta and his battery". IEEE Antennas and Propagation Magazine. 34 (2): 30–37. Bibcode:1992IAPM...34...30C. doi:10.1109/74.134307. S2CID 6515671.
  11. James, Frank A. J. L. (1989). "Michael Faraday's first law of electrochemistry: how context develops new knowledge". In Stock, J. T.; Orna, M. V. (eds.). Electrochemistry, past and present. Washington, DC: American Chemical Society. pp. 32–49. ISBN 9780841215726.
  12. Stock, John T. (1989). "Electrochemistry in retrospect: an overview". In Orna, Mary Virginia (ed.). Electrochemistry, past and present. Washington, DC: American Chemical Society. pp. 1–17. ISBN 9780841215726.
  13. James, F.A.J.L. (18 July 2013). "The Royal Institution of Great Britain: 200 years of scientific discovery and communication". Interdisciplinary Science Reviews. 24 (3): 225–231. doi:10.1179/030801899678777.
  14. Turner, Edward (1841). Liebig, Justus; Gregory, William (eds.). Elements of chemistry: including the actual state and prevalent doctrines of the science (7 ed.). London: Taylor and Walton. p. 102. During the action of a simple circle, as of zinc and copper, excited by dilute sulfuric acid, all of the hydrogen developed in the voltaic action is evolved at the surface of the copper.
  15. Goodisman, Jerry (2001). "Observations on Lemon Cells". Journal of Chemical Education. 78 (4): 516. Bibcode:2001JChEd..78..516G. doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks use an incorrect model for a cell with zinc and copper electrodes in an acidic electrolyte.
  16. Graham-Cumming, John (2009). "Tempio Voltiano". The Geek Atlas: 128 Places Where Science and Technology Come Alive. O'Reilly Media. p. 97. ISBN 9780596523206.
  17. Ronalds, B.F. (2016). Sir Francis Ronalds: Father of the Electric Telegraph. London: Imperial College Press. ISBN 978-1-78326-917-4.
  18. Ronalds, B.F. (July 2016). "Francis Ronalds (1788-1873): The First Electrical Engineer?". Proceedings of the IEEE. 104 (7): 1489–1498. doi:10.1109/JPROC.2016.2571358. S2CID 20662894.


बाहरी संबंध