विद्युतीय विखंडन

From Vigyanwiki
Revision as of 23:10, 9 February 2023 by alpha>AmitKumar
टेस्ला कॉइल से रिबन जैसे प्लाज्मा (भौतिकी) फिलामेंट्स दिखाते हुए बिजली का निर्वहन में इलेक्ट्रिकल ब्रेकडाउन।

इलेक्ट्रानिक्स में, इलेक्ट्रिकल ब्रेकडाउन या डाइइलेक्ट्रिक ब्रेकडाउन ऐसी प्रक्रिया है जो तब होती है जब इंसुलेटर (बिजली) सामग्री ( ढांकता हुआ), पर्याप्त उच्च वोल्टेज के अधीन, अचानक विद्युत कंडक्टर बन जाता है और विद्युत प्रवाह इसके माध्यम से प्रवाहित होता है। जब प्रयुक्त वोल्टेज के कारण विद्युत क्षेत्र सामग्री की ढांकता हुआ शक्ति से अधिक हो जाता है तो सभी इन्सुलेट सामग्री टूट जाती है। वह वोल्टेज जिस पर दी गई इंसुलेटिंग वस्तु प्रवाहकीय हो जाती है, उसे ब्रेकडाउन वोल्टेज कहा जाता है और, इसकी ढांकता हुआ शक्ति के अतिरिक्त, इसके आकार और आकार पर निर्भर करता है, और जिस वस्तु पर वोल्टेज लगाया जाता है, उस पर निर्भर करता है। पर्याप्त विद्युत क्षमता के अनुसार, ठोस, तरल पदार्थ या गैसों (और सैद्धांतिक रूप से निर्वात में भी) के अंदर विद्युत विखंडन हो सकता है। चूंकि, प्रत्येक प्रकार के ढांकता हुआ माध्यम के लिए विशिष्ट ब्रेकडाउन तंत्र भिन्न होते हैं।

इलेक्ट्रिकल ब्रेकडाउन क्षणिक घटना हो सकती है (जैसा कि स्थिरविद्युत निर्वाह में होता है), या यदि सुरक्षात्मक उपकरण पावर परिपथ में करंट को बाधित करने में विफल रहते हैं, तो निरंतर इलेक्ट्रिक आर्क हो सकता है। इस स्थितियों में बिजली के टूटने से बिजली के उपकरणों की भयावह विफलता और आग लगने का खतरा हो सकता है।

व्याख्या

विद्युत प्रवाह विद्युत क्षेत्र के कारण होने वाली सामग्री में विद्युत आवेशित कणों का प्रवाह होता है, जो सामान्यतः सामग्री में वोल्टेज अंतर द्वारा निर्मित होता है। मोबाइल आवेशित कण जो विद्युत धारा बनाते हैं, आवेश वाहक कहलाते हैं। विभिन्न पदार्थों में विभिन्न कण आवेश वाहक के रूप में काम करते हैं: धातुओं और कुछ अन्य ठोस पदार्थों में प्रत्येक परमाणु के कुछ बाहरी इलेक्ट्रॉन (चालन इलेक्ट्रॉन) सामग्री में घूमने में सक्षम होते हैं; इलेक्ट्रोलाइट्स और प्लाज्मा (भौतिकी) में यह आयन, विद्युत आवेशित परमाणु या अणु और इलेक्ट्रॉन होते हैं जो आवेश वाहक होते हैं। सामग्री जिसमें चालन के लिए उपलब्ध आवेश वाहकों की उच्च सांद्रता होती है, जैसे कि धातु, दिए गए विद्युत क्षेत्र के साथ बड़ी धारा का संचालन करेगी, और इस प्रकार इसकी विद्युत प्रतिरोधकता कम होती है; इसे विद्युत चालक कहते हैं।[1] सामग्री जिसमें कुछ आवेश वाहक होते हैं, जैसे कांच या सिरेमिक, किसी दिए गए विद्युत क्षेत्र के साथ बहुत कम धारा का संचालन करेगा और इसकी प्रतिरोधकता अधिक होगी; इसे विद्युत इन्सुलेटर या डाइइलेक्ट्रिक कहा जाता है। सभी पदार्थ आवेशित कणों से बने होते हैं, किन्तु इंसुलेटर की सामान्य संपत्ति यह है कि ऋणात्मक आवेश, कक्षीय इलेक्ट्रॉन, धनात्मक आवेश, परमाणु नाभिक से कसकर बंधे होते हैं, और आसानी से मोबाइल बनने के लिए मुक्त नहीं हो सकते।

चूंकि, जब निश्चित क्षेत्र की शक्ति पर किसी भी इंसुलेटिंग पदार्थ पर बड़ा पर्याप्त विद्युत क्षेत्र प्रयुक्त किया जाता है, तो सामग्री में आवेश वाहकों की संख्या परिमाण के कई क्रमों से अचानक बढ़ जाती है, इसलिए इसका प्रतिरोध गिर जाता है और यह कंडक्टर बन जाता है।[1] इसे इलेक्ट्रिकल ब्रेकडाउन कहा जाता है। टूटने का कारण बनने वाला भौतिक तंत्र अलग-अलग पदार्थों में भिन्न होता है। ठोस में, यह सामान्यतः तब होता है जब विद्युत क्षेत्र बाहरी रासायनिक संयोजन इलेक्ट्रॉनों को उनके परमाणुओं से दूर खींचने के लिए पर्याप्त शक्तिशाली हो जाता है, इसलिए वे मोबाइल बन जाते हैं, और अन्य परमाणुओं के साथ उनके टकराव से उत्पन्न गर्मी अतिरिक्त इलेक्ट्रॉनों को छोड़ती है। गैस में, विद्युत क्षेत्र स्वाभाविक रूप से उपस्थित मुक्त इलेक्ट्रॉनों की छोटी संख्या को तेज करता है (फोटोआयनीकरण और रेडियोधर्मी क्षय जैसी प्रक्रियाओं के कारण) इतनी अधिक गति से कि जब वे गैस के अणुओं से टकराते हैं तो वे उनमें से अतिरिक्त इलेक्ट्रॉनों को बाहर निकालते हैं, जिन्हें आयनीकरण कहा जाता है, जो टाउनसेंड डिस्चार्ज नामक श्रृंखला अभिक्रिया में अधिक मुक्त इलेक्ट्रॉनों और आयनों को बनाने वाले अधिक अणुओं को आयनित करने के लिए आगे बढ़ें। जैसा कि इन उदाहरणों से संकेत मिलता है, अधिकांश सामग्रियों में ब्रेकडाउन तीव्र श्रृंखला प्रतिक्रिया से होता है जिसमें मोबाइल आवेशित कण अतिरिक्त आवेशित कण छोड़ते हैं।

डाइलेक्ट्रिक शक्ति और ब्रेकडाउन वोल्टेज

विद्युत क्षेत्र की शक्ति (वोल्ट प्रति मीटर में) जिस पर ब्रेकडाउन होता है, वह इंसुलेटिंग सामग्री की आंतरिक संपत्ति है जिसे इसकी ढांकता हुआ शक्ति कहा जाता है। विद्युत क्षेत्र सामान्यतः सामग्री पर लगाए गए वोल्टेज अंतर के कारण होता है। किसी दिए गए इंसुलेटिंग ऑब्जेक्ट में ब्रेकडाउन का कारण बनने के लिए आवश्यक प्रयुक्त वोल्टेज को ऑब्जेक्ट का ब्रेकडाउन वोल्टेज कहा जाता है। प्रयुक्त वोल्टेज द्वारा किसी दिए गए इंसुलेटिंग ऑब्जेक्ट में बनाया गया विद्युत क्षेत्र वस्तु के आकार और आकार और उस वस्तु के स्थान पर निर्भर करता है जहां वोल्टेज लगाया जाता है, इसलिए सामग्री की ढांकता हुआ शक्ति के अतिरिक्त, ब्रेकडाउन वोल्टेज इन पर निर्भर करता है कारक।

दो फ्लैट धातु इलेक्ट्रोड के बीच इन्सुलेटर की फ्लैट शीट में, विद्युत क्षेत्र वोल्टेज अंतर के समानुपाती होता है मोटाई से विभाजित इन्सुलेटर का, इसलिए सामान्य रूप से ब्रेकडाउन वोल्टेज परावैद्युत सामर्थ्य के समानुपाती होता है और दो कंडक्टरों के बीच इन्सुलेशन की लंबाई

चूंकि कंडक्टरों का आकार ब्रेकडाउन वोल्टेज को प्रभावित कर सकता है।

टूटने की प्रक्रिया(ब्रेकडाउन प्रक्रिया)

ब्रेकडाउन स्थानीय प्रक्रिया है, और इन्सुलेट माध्यम में उच्च वोल्टेज अंतर के अधीन होता है जो इन्सुलेटर में किसी भी बिंदु पर प्रारंभ होता है विद्युत क्षेत्र पहले सामग्री की स्थानीय ढांकता हुआ शक्ति से अधिक हो जाता है। चूंकि कंडक्टर की सतह पर विद्युत क्षेत्र हवा या तेल जैसे सजातीय इन्सुलेटर में डूबे हुए कंडक्टर के लिए उभरे हुए हिस्सों, नुकीले बिंदुओं और किनारों पर सबसे अधिक होता है, सामान्यतः ब्रेकडाउन इन बिंदुओं पर प्रारंभ होता है। यदि ब्रेकडाउन ठोस इंसुलेटर में स्थानीय दोष के कारण होता है, जैसे सिरेमिक इंसुलेटर में दरार या बुलबुला, तो यह छोटे से क्षेत्र तक सीमित रह सकता है; इसे आंशिक निर्वहन कहा जाता है। तेज नुकीले कंडक्टर से सटे गैस में, स्थानीय ब्रेकडाउन प्रक्रियाएं, कोरोना डिस्चार्ज या ब्रश निर्वहन, कंडक्टर को गैस में आयनों के रूप में लीक करने की अनुमति दे सकते हैं। चूंकि, सामान्यतः सजातीय ठोस इन्सुलेटर में क्षेत्र के टूटने और प्रवाहकीय बनने के बाद इसमें कोई वोल्टेज ड्रॉप नहीं होता है, और इन्सुलेटर की शेष लंबाई पर पूर्ण वोल्टेज अंतर प्रयुक्त होता है। चूंकि वोल्टेज ड्रॉप अब कम लंबाई में है, यह शेष सामग्री में उच्च विद्युत क्षेत्र बनाता है, जिससे अधिक सामग्री टूट जाती है। तो ब्रेकडाउन क्षेत्र तेजी से (माइक्रोसेकंड के अंदर) इंसुलेटर के छोर से दूसरे छोर तक वोल्टेज ग्रेडिएंट की दिशा में फैलता है, जब तक कि वोल्टेज अंतर को प्रयुक्त करने वाले दो संपर्कों के बीच सामग्री के माध्यम से निरंतर प्रवाहकीय पथ नहीं बनाया जाता है, जिससे करंट की अनुमति मिलती है। उनके बीच प्रवाहित करें।

इलेक्ट्रोमैग्नेटिक वेव के कारण बिना वोल्टेज लगाए भी इलेक्ट्रिकल ब्रेकडाउन हो सकता है। जब पर्याप्त तीव्र विद्युत चुम्बकीय तरंग भौतिक माध्यम से निकलती है, तो लहर का विद्युत क्षेत्र अस्थायी विद्युत टूटने का कारण बनने के लिए पर्याप्त शक्तिशाली हो सकता है। उदाहरण के लिए हवा में छोटे से स्थान पर केंद्रित लेज़र बीम फोकल बिंदु पर बिजली के टूटने और हवा के आयनीकरण का कारण बन सकता है।

परिणाम

व्यावहारिक विद्युत परिपथों में बिजली का टूटना सामान्यतः अवांछित घटना है, इंसुलेटिंग सामग्री की विफलता के कारण शार्ट परिपथ होता है, जिसके परिणामस्वरूप उपकरण की भयावह विफलता हो सकती है। पावर परिपथ में, प्रतिरोध में अचानक गिरावट से सामग्री के माध्यम से उच्च धारा प्रवाहित होती है, विद्युत चाप की प्रारंभ होती है, और यदि सुरक्षा उपकरण करंट को जल्दी से बाधित नहीं करते हैं, तो अचानक अत्यधिक जूल हीटिंग इन्सुलेट सामग्री या परिपथ के अन्य भागों का कारण बन सकता है। विस्फोटक रूप से पिघलना या वाष्पित होना, उपकरण को हानि पहुंचाना और आग का खतरा उत्पन्न करना। चूंकि, परिपथ में बाहरी सुरक्षात्मक उपकरण जैसे परिपथ वियोजक और वर्तमान सीमित उच्च करंट को रोक सकते हैं; और टूटने की प्रक्रिया ही अनिवार्य रूप से विनाशकारी नहीं है और प्रतिवर्ती हो सकती है। यदि बाहरी परिपथ द्वारा आपूर्ति की गई धारा को पर्याप्त रूप से जल्दी से हटा दिया जाता है, तो सामग्री को कोई हानि नहीं होता है, और प्रयुक्त वोल्टेज को कम करने से सामग्री की इन्सुलेट स्थिति में संक्रमण हो जाता है।

स्थैतिक बिजली के कारण बिजली और चिंगारी हवा के विद्युत टूटने के प्राकृतिक उदाहरण हैं। इलेक्ट्रिकल ब्रेकडाउन कई विद्युत घटकों के सामान्य ऑपरेटिंग मोड का हिस्सा है, जैसे फ्लोरोसेंट रोशनी, और नीयन रोशनी, ज़ेनर डायोड, हिमस्खलन डायोड, आईएमपीएटीटी डायोड, पारा-वाष्प सुधारक, थाइरेट्रॉन, ignitron और क्रिट्रॉन ट्यूब जैसे गैस डिस्चार्ज लैंप , और स्पार्क प्लग

विद्युत रोधन की विफलता

इलेक्ट्रिकल ब्रेकडाउन प्रायः बिजली वितरण ग्रिड में उच्च वोल्टेज ट्रांसफार्मर या [[संधारित्र]] के अंदर उपयोग किए जाने वाले ठोस या तरल इन्सुलेट सामग्री की विफलता से जुड़ा होता है, जिसके परिणामस्वरूप सामान्यतः शॉर्ट परिपथ या उड़ा हुआ फ्यूज होता है। भूमिगत विद्युत केबलों के अंदर, या पेड़ों की आस-पास की शाखाओं से उत्पन्न होने वाली लाइनों के अंदर, ओवरहेड विद्युत विद्युत प्रसारण को निलंबित करने वाले इंसुलेटर में विद्युत खराबी भी हो सकती है।

ीकृत परिपथों और अन्य ठोस अवस्था इलेक्ट्रॉनिक उपकरणों के डिजाइन में डाइइलेक्ट्रिक ब्रेकडाउन भी महत्वपूर्ण है। ऐसे उपकरणों में इन्सुलेट परतें सामान्य ऑपरेटिंग वोल्टेज का सामना करने के लिए डिज़ाइन की गई हैं, किन्तु स्थैतिक बिजली से उच्च वोल्टेज इन परतों को नष्ट कर सकता है, जिससे डिवाइस प्रयोगहीन हो जाता है। कैपेसिटर की ढांकता हुआ शक्ति सीमित करती है कि कितनी ऊर्जा संग्रहीत की जा सकती है और डिवाइस के लिए सुरक्षित कार्यशील वोल्टेज।[2]

क्रियाविधि

ब्रेकडाउन तंत्र ठोस, तरल और गैसों में भिन्न होते हैं। ब्रेकडाउन इलेक्ट्रोड सामग्री, कंडक्टर सामग्री की तेज वक्रता (स्थानीय रूप से तीव्र विद्युत क्षेत्रों के परिणामस्वरूप), इलेक्ट्रोड के बीच के अंतर के आकार और अंतराल में सामग्री के घनत्व से प्रभावित होता है।

ठोस

ठोस सामग्री में (जैसे कि बिजली के तारों में) लंबे समय तक आंशिक निर्वहन सामान्यतः टूटने से पहले होता है, जो इन्सुलेटर और वोल्टेज अंतराल के निकटतम धातुओं को कम करता है। अंतत: आंशिक निर्वहन कार्बनीकृत सामग्री के चैनल के माध्यम से होता है जो अंतराल के पार विद्युत प्रवाहित करता है।

तरल पदार्थ

तरल पदार्थों में टूटने के संभावित तंत्र में बुलबुले, छोटी अशुद्धियाँ और विद्युत सुपरहीटिंग | सुपर-हीटिंग सम्मिलित हैं। तरल पदार्थों में टूटने की प्रक्रिया हाइड्रोडायनामिक प्रभावों से जटिल होती है, क्योंकि इलेक्ट्रोड के बीच की खाई में गैर-रैखिक विद्युत क्षेत्र की शक्ति से द्रव पर अतिरिक्त दबाव डाला जाता है।

अतिचालकता के लिए शीतलक के रूप में उपयोग की जाने वाली तरलीकृत गैसों में - जैसे 4.2 केल्विन (इकाइयां) पर हीलियम या 77 K पर नाइट्रोजन - बुलबुले टूटने को प्रेरित कर सकते हैं।

ऑयल-कूल्ड और ट्रांसफार्मर का तेल|ऑयल-इंसुलेटेड ट्रांसफॉर्मर में ब्रेकडाउन के लिए फील्ड स्ट्रेंथ लगभग 20 kV/mm (शुष्क हवा के लिए 3 kV/mm की तुलना में) होती है। उपयोग किए गए शुद्ध तेलों के अतिरिक्त, छोटे कण प्रदूषकों को दोष दिया जाता है।

गैसें

विद्युत विखंडन गैस के अंदर तब होता है जब गैस की ढांकता हुआ शक्ति पार हो जाती है। तीव्र वोल्टेज ग्रेडियेंट के क्षेत्र पास के गैस को आंशिक रूप से आयनित करने और संचालन प्रारंभ करने का कारण बन सकते हैं। यह जानबूझकर लो प्रेशर डिस्चार्ज जैसे फ्लोरोसेंट लाइट्स में किया जाता है। वोल्टेज जो गैस के विद्युत विखंडन की ओर ले जाता है, पास्चेन के नियम द्वारा अनुमानित है।

हवा में आंशिक निर्वहन गरज के साथ या उच्च वोल्टेज उपकरण के आसपास ओजोन की ताजी हवा की गंध का कारण बनता है। चूंकि हवा सामान्यतः उत्कृष्ट इन्सुलेटर है, जब पर्याप्त उच्च वोल्टेज (लगभग 3 x 10 का विद्युत क्षेत्र) द्वारा जोर दिया जाता है6 वोल्ट/मीटर या 3 केवी/मिमी[3]), हवा टूटना प्रारंभ हो सकती है, आंशिक रूप से प्रवाहकीय हो सकती है। अपेक्षाकृत छोटे अंतरालों के पार, हवा में ब्रेकडाउन वोल्टेज अंतराल की लंबाई के दबाव का कार्य है। यदि वोल्टेज पर्याप्त रूप से उच्च है, तो हवा का पूर्ण विद्युत विखंडन विद्युत चिंगारी या विद्युत चाप में परिणत होगा जो पूरे अंतर को पाटता है।

चिंगारी का रंग उन गैसों पर निर्भर करता है जो गैसीय मीडिया बनाती हैं। जबकि स्थैतिक बिजली द्वारा उत्पन्न छोटी चिंगारियां कठिनाई से श्रव्य हो सकती हैं, बड़ी चिंगारियां प्रायः जोरदार झटके या धमाके के साथ होती हैं। बिजली विशाल चिंगारी का उदाहरण है जो कई मील लंबी हो सकती है।

आग्रही चाप

यदि कोई फ़्यूज़ (विद्युत)इलेक्ट्रिकल) या परिपथ ब्रेकर पावर परिपथ में चिंगारी के माध्यम से करंट को बाधित करने में विफल रहता है, तो करंट जारी रह सकता है, जिससे बहुत गर्म इलेक्ट्रिक आर्क (लगभग 30 000 डिग्री सेल्सीयस) बनता है। चाप का रंग मुख्य रूप से संवाहक गैसों पर निर्भर करता है, जिनमें से कुछ वाष्पीकृत होने से पहले ठोस हो सकते हैं और चाप में गर्म प्लाज्मा (भौतिकी) में मिश्रित हो सकते हैं। चाप में और उसके आस-पास मुक्त आयन नए रासायनिक यौगिकों, जैसे ओजोन, कार्बन मोनोआक्साइड और नाइट्रस ऑक्साइड बनाने के लिए पुनः संयोजित होते हैं। ओजोन को इसकी विशिष्ट गंध के कारण आसानी से देखा जा सकता है।[4] चूंकि चिंगारी और चाप सामान्यतः अवांछनीय होते हैं, वे गैसोलीन इंजनों के लिए स्पार्क प्लग, धातुओं की विद्युत वेल्डिंग, या विद्युत चाप भट्टी में धातु के पिघलने जैसे अनुप्रयोगों में उपयोगी हो सकते हैं। गैस डिस्चार्ज से पहले गैस अलग-अलग रंगों से चमकती है जो परमाणुओं के उत्सर्जन स्पेक्ट्रम पर निर्भर करती है। सभी तंत्र पूरी तरह से समझ में नहीं आते हैं।

टूटने से पहले वोल्टेज-वर्तमान संबंध

उम्मीद की जाती है कि वैक्यूम स्वयं श्विंगर सीमा पर या उसके पास बिजली के टूटने से निकलेगा।

वोल्ट-करंट संबंध

गैस टूटने से पहले, वोल्टेज और करंट के बीच गैर-रैखिक संबंध होता है जैसा कि चित्र में दिखाया गया है। क्षेत्र 1 में मुक्त आयन होते हैं जिन्हें क्षेत्र द्वारा त्वरित किया जा सकता है और करंट प्रेरित किया जा सकता है। ये निश्चित वोल्टेज के बाद संतृप्त हो जाएंगे और स्थिर धारा देंगे, क्षेत्र 2। क्षेत्र 3 और 4 आयन हिमस्खलन के कारण होते हैं जैसा कि टाउनसेंड डिस्चार्ज तंत्र द्वारा समझाया गया है।

फ्रेडरिक पासचेन ने ब्रेकडाउन स्थिति और ब्रेकडाउन वोल्टेज के बीच संबंध स्थापित किया। उन्होंने पासचेन के नियम को व्युत्पन्न किया जो ब्रेकडाउन वोल्टेज को परिभाषित करता है () अंतराल की लंबाई के समारोह के रूप में समान क्षेत्र के अंतराल के लिए () और गैप प्रेशर ().[5]

पाशेन ने दबाव अंतराल के न्यूनतम मूल्य के बीच संबंध भी निकाला जिसके लिए न्यूनतम वोल्टेज के साथ ब्रेकडाउन होता है।[5]

और उपयोग की गई गैस के आधार पर स्थिरांक हैं।

कोरोना ब्रेकडाउन

उच्चतम विद्युत तनाव वाले बिंदुओं पर उच्च वोल्टेज कंडक्टरों पर कोरोना डिस्चार्ज के रूप में हवा का आंशिक टूटना होता है। ऐसे कंडक्टर जिनके नुकीले बिंदु होते हैं, या छोटी त्रिज्या वाली गेंदें, ढांकता हुआ टूटने का कारण बनती हैं, क्योंकि बिंदुओं के आसपास की क्षेत्र की शक्ति सपाट सतह के आसपास की तुलना में अधिक होती है। उच्च-वोल्टेज तंत्र को गोलाकार वक्रों और ग्रेडिंग रिंगों के साथ डिज़ाइन किया गया है जिससे संकेंद्रित क्षेत्रों से बचा जा सके जो ब्रेकडाउन को अवक्षेपित करते हैं।

उपस्थिति

कोरोना को कभी-कभी उच्च वोल्टेज तारों के चारों ओर नीली चमक के रूप में देखा जाता है और उच्च वोल्टेज बिजली लाइनों के साथ तेज ध्वनि के रूप में सुना जाता है। कोरोना रेडियो फ्रीक्वेंसी ध्वनि भी उत्पन्न करता है जिसे 'स्थिर' या रेडियो रिसीवर पर गुलजार के रूप में भी सुना जा सकता है। कोरोना प्राकृतिक रूप से सेंट एल्मो की आग के रूप में उच्च बिंदुओं पर भी हो सकता है जैसे कि चर्च स्पियर्स, ट्रीटॉप्स, या गरज के समय जहाज के मस्तूल।

ओजोन पीढ़ी

जल शोधन प्रक्रिया में 30 से अधिक वर्षों से कोरोना डिस्चार्ज ओजोन जनरेटर का उपयोग किया गया है। ओजोन जहरीली गैस है, जो क्लोरीन से भी अधिक शक्तिशाली है। विशिष्ट पेयजल उपचार संयंत्र में, जीवाणु को मारने और वाइरस को नष्ट करने के लिए ओजोन गैस को फ़िल्टर किए गए पानी में घोल दिया जाता है। ओजोन पानी से दुर्गंध और स्वाद को भी दूर करता है। ओजोन का मुख्य लाभ यह है कि उपभोक्ता तक पानी पहुंचने से पहले कोई भी अवशिष्ट ओवरडोज गैसीय ऑक्सीजन में विघटित हो जाता है। यह क्लोरीन गैस या क्लोरीन लवण के विपरीत है, जो पानी में अधिक समय तक रहता है और उपभोक्ता द्वारा चखा जा सकता है।

अन्य उपयोग

चूंकि कोरोना डिस्चार्ज सामान्यतः अवांछनीय है, हाल तक यह फोटोकॉपीर्स (जैरोग्राफ़ी) और लेजर प्रिंटर के संचालन में आवश्यक था। कई आधुनिक कॉपियर और लेजर प्रिंटर अब विद्युत प्रवाहकीय रोलर के साथ फोटोकंडक्टर ड्रम को चार्ज करते हैं, जिससे अवांछित इनडोर ओजोन प्रदूषण कम हो जाता है।

बिजली की छड़ें हवा में प्रवाहकीय पथ बनाने के लिए कोरोना डिस्चार्ज का उपयोग करती हैं जो रॉड की ओर संकेत करती हैं, इमारतों और अन्य संरचनाओं से संभावित रूप से हानिकारक बिजली को दूर करती हैं।[6] कई पॉलिमर की सतह के गुणों को संशोधित करने के लिए कोरोना डिस्चार्ज का भी उपयोग किया जाता है। उदाहरण प्लास्टिक सामग्री का कोरोना उपचार है जो पेंट या स्याही को ठीक से पालन करने की अनुमति देता है।

विघटनकारी उपकरण

ठोस इन्सुलेटर के अंदर ढांकता हुआ टूटना स्थायी रूप से इसकी उपस्थिति और गुणों को बदल सकता है। जैसा कि इस लिचेंबर्ग चित्र में दिखाया गया है

विघटनकारी उपकरण[citation needed] किसी परावैद्युत को उसकी परावैद्युत सामर्थ्य से अधिक विद्युतीय रूप से अधिक तनाव देने के लिए डिज़ाइन किया गया है जिससे जानबूझकर उपकरण को विद्युतीय क्षति पहुँचाई जा सके। व्यवधान, ढांकता हुआ के हिस्से के अचानक संक्रमण का कारण बनता है, इन्सुलेट स्थिति से अत्यधिक विद्युत चालन स्थिति में। यह संक्रमण विद्युत चिंगारी या प्लाज्मा (भौतिकी) चैनल के गठन की विशेषता है, संभवतः ढांकता हुआ सामग्री के हिस्से के माध्यम से विद्युत चाप द्वारा पीछा किया जाता है।

यदि ढांकता हुआ ठोस, स्थायी भौतिक और रासायनिक परिवर्तन होता है, तो निर्वहन के मार्ग में सामग्री की ढांकता हुआ शक्ति पर्याप्त मात्रा में कम हो जाएगी, और डिवाइस को केवल बार उपयोग किया जा सकता है। चूंकि, यदि ढांकता हुआ पदार्थ तरल या गैस है, तो ढांकता हुआ प्लाज्मा चैनल के माध्यम से बार बाहरी रूप से बाधित होने पर ढांकता हुआ अपने इन्सुलेट गुणों को पूरी तरह से ठीक कर सकता है।

वाणिज्यिक स्पार्क अंतराल इस संपत्ति का उपयोग स्पंदित बिजली प्रणालियों में उच्च वोल्टेज को अचानक स्विच करने के लिए करते हैं, दूरसंचार और शक्ति प्रणालियों प्रणाली के लिए वोल्टेज स्पाइक सुरक्षा प्रदान करते हैं, और आंतरिक दहन इंजनों में चिंगारी का अंतर के माध्यम से ईंधन को प्रज्वलित करते हैं। प्रारंभिक रेडियो टेलीग्राफ प्रणाली में स्पार्क-गैप ट्रांसमीटर का उपयोग किया गया था।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Ray, Subir (2013). An Introduction to High Voltage Engineering, 2nd Ed. PHI Learning Ltd. p. 1. ISBN 9788120347403.
  2. Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A. (2017). "Recovery of Alumina Nanocapacitors after High Voltage Breakdown". Scientific Reports. 7 (1): 932. Bibcode:2017NatSR...7..932B. doi:10.1038/s41598-017-01007-9. PMC 5430567. PMID 28428625.
  3. Hong, Alice (2000). "Dielectric Strength of Air". The Physics Factbook.
  4. "Lab Note #106 Environmental Impact of Arc Suppression". Arc Suppression Technologies. April 2011. Retrieved March 15, 2012.
  5. 5.0 5.1 Ray, Subir (2009). An Introduction to High Voltage Engineering. PHI Learning. pp. 19–21. ISBN 978-8120324176.
  6. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. "Electric Potential". Sears and Zemansky's University Physics (11 ed.). San Francisco: Addison Wesley. pp. 886–7. ISBN 0-8053-9179-7.