साइक्लोटोमिक क्षेत्र
संख्या सिद्धांत में साइक्लोटोमिक क्षेत्र संख्या क्षेत्र है। जो संयोजन (क्षेत्र सिद्धांत) द्वारा जिससे कि जटिल संख्या जड़ से प्राप्त होता है Q परिमेय संख्याओं का क्षेत्र (गणित) है।
प्रारूप के अंतिम प्रमेय के साथ उनके संबंध के कारण चक्रीय क्षेत्रों ने आधुनिक अमूर्त बीजगणित और संख्या सिद्धांत के विकास में महत्वपूर्ण भूमिका निभाई है। यह इन क्षेत्रों के अंकगणित अभाज्य संख्या के लिए उनकी गहन जाँच की प्रक्रिया में था। n - और अधिक सटीक रूप से, उनके पूर्णांकों के छल्ले में अद्वितीय गुणनखंडन की विफलता के कारण गंभीर दु:ख ने पहली बार आदर्श संख्या की अवधारणा प्रस्तुत की और अपने प्रसिद्ध कुमेर की सर्वांगसमताओं को सिद्ध किया है ।
परिभाषा
के लिए n ≥ 1, होने देना ζn = e2πi/n ∈ C; यह जिससे कि प्राचीन जड़ है n जिससे कि वें जड़। फिर nवें साइक्लोटोमिक क्षेत्र-विस्तार है Q(ζn) का Q द्वारा उत्पन्न ζn.
गुण
- nn}}वां साइक्लोटोमिक बहुपद
- अलघुकरणीय बहुपद है, इसलिए यह न्यूनतम बहुपद (क्षेत्र सिद्धांत) है ζn ऊपर Q
- संयुग्मी तत्व (क्षेत्र सिद्धांत)। ζn में C इसलिए अन्य प्राचीन हैं n जिससे कि वें जड़ें: ζk
n के लिए 1 ≤ k ≤ n साथ gcd(k, n) = 1. - के क्षेत्र विस्तार की डिग्री Q(ζn) इसलिए [Q(ζn) : Q] = deg Φn = φ(n), कहाँ φ यूलर का कुल कार्य है।
- के बहुपद की जड़ xn − 1 की शक्तियाँ हैं ζn, इसलिए Q(ζn) का विभाजन क्षेत्र है xn − 1 या का Φ(x) ऊपर Q.
- इसलिए Q(ζn) का गाल्वा विस्तार है Q.
- बधफलक समूह पूर्णांकों के गुणनात्मक समूह में प्राकृतिक रूपांतरण है गुणनात्मक समूह , जिसमें उलटा अवशेष मॉड्यूलर अंकगणित होता हैn, जो अवशेष हैं a आधुनिक n साथ 1 ≤ a ≤ n और gcd(a, n) = 1. समरूपता प्रत्येक को भेजती है को a आधुनिक n, कहाँ a पूर्णांक ऐसा है σ(ζn) = ζa
n. - के पूर्णांकों का वलय Q(ζn) है Z[ζn].
- n > 2 के लिए, विस्तार के बीजगणितीय संख्या क्षेत्र का विविक्तकर Q(ζn) / Q है[1]
- विशेष रूप से, Q(ζn) / Q विभाजित न होने वाले प्रत्येक अभाज्य के ऊपर अविभाजित है n.
- यदि n प्रधान की शक्ति है p, तब Q(ζn) / Q ऊपर पूर्ण रूप से विभक्त है p.
- यदि q विभाजित न होने वाला अभाज्य है n, फिर फ्रोबेनियस तत्व के अवशेष से मेल खाता है q में .
- जिससे कि जड़ों का समूह Q(ζn) आदेश है n या 2n, n के अनुसार सम या विषम है।
- इकाई समूह Z[ζn]× रैंक का अंतिम रूप से उत्पन्न एबेलियन समूह है φ(n)/2 – 1, किसी के लिए n > 2, डिरिचलेट इकाई प्रमेय द्वारा। विशेष रूप से, Z[ζn]× केवल के लिए परिमित समूह है n ∈ {1, 2, 3, 4, 6}. का मरोड़ उपसमूह Z[ζn]× में जिससे कि जड़ों का समूह है Q(ζn), जिसका वर्णन पिछले विषय में किया गया था। साइक्लोटॉमिक इकाइयां उपसमूह उपसमूह का स्पष्ट परिमित-सूचकांक बनाती हैं Z[ζn]×.
- क्रोनेकर-वेबर प्रमेय कहता है कि प्रत्येक परिमित विस्तार एबेलियन विस्तार Q में C में निहित है Q(ζn) कुछ के लिए n. समतुल्य, सभी साइक्लोटॉमिक क्षेत्रों का मिलन Q(ζn) अधिकतम एबेलियन विस्तार है Qab का Q.
नियमित बहुभुजों के साथ संबंध
कार्ल फ्रेडरिक गॉस ने निर्माण योग्य बहुभुज की समस्या के संबंध में, नियमित बहुभुज|नियमित, साइक्लोटोमिक क्षेत्रों के सिद्धांत में प्रारंभिक प्रगति की n-दिशा सूचक यंत्र और सीधी धार के साथ। उनका आश्चर्यजनक परिणाम जो उनके पूर्ववर्तियों से बच गया था, वह यह था कि नियमित हेप्टाडेकागन | 17-गॉन का निर्माण किया जा सकता था। अधिक सामान्यतः , किसी भी पूर्णांक के लिए n ≥ 3, निम्नलिखित समतुल्य हैं।
- नियमित n-गॉन रचनात्मक है;
- क्षेत्र का क्रम है, Q से प्रारंभ होता है और Q(ζn)के साथ समाप्त होता है, जैसे कि प्रत्येक पिछले क्षेत्र का द्विघात विस्तार है।
- φ(n) 2 की शक्ति है;
- कुछ पूर्णांकों के लिए a, r ≥ 0 और प्रारूप प्रधान . ( प्रारूप प्रधान विषम प्रधान है p ऐसा है कि p − 1 2 की शक्ति है। ज्ञात प्रारूप प्रधान 3 (संख्या), 5 (संख्या), 17 (संख्या), 257 (संख्या), 65537 (संख्या) हैं, और यह संभावना है कि कोई अन्य नहीं है।
छोटे उदाहरण
- n = 3 और n = 6: समीकरण और बताते हैं कि Q(ζ3) = Q(ζ6) = Q(√−3 ), जो का द्विघात विस्तार है Q. तदनुसार, नियमित 3-गॉन और नियमित 6-गॉन रचनात्मक होते हैं।
- n = 4: इसी प्रकार, ζ4 = i, इसलिए Q(ζ4) = Q(i), और नियमित 4-गॉन रचनात्मक है।
- n = 5: क्षेत्र Q(ζ5) का द्विघात विस्तार नहीं है Q, लेकिन यह द्विघात विस्तार का द्विघात विस्तार है Q(√5 ), इसलिए नियमित 5-गॉन निर्माण योग्य है।
प्रारूप की अंतिम प्रमेय के साथ संबंध
प्रारूप की अंतिम प्रमेय को सिद्ध करने का स्वाभाविक विधि द्विपद का गुणनखण्ड करना है xn + yn, कहाँ n विषम अभाज्य है, जो प्रारूप के समीकरण के पक्ष में प्रकट होता है
निम्नलिखित नुसार:
यहाँ x और y साधारण पूर्णांक हैं, जबकि कारक साइक्लोटोमिक क्षेत्र में बीजगणितीय पूर्णांक हैं Q(ζn). यदि अंकगणित का मौलिक प्रमेय साइक्लोटोमिक पूर्णांकों में है Z[ζn] , तो इसका उपयोग प्रारूप के समीकरण के अ-तुच्छ समाधानों के अस्तित्व को अस्वीकृत करने के लिए किया जा सकता है।
प्रारूप के अंतिम प्रमेय से निपटने के कई प्रयास इन पंक्तियों के साथ आगे बढ़े, और प्रारूप के प्रमाण दोनों के लिए n = 4 और यूलर का प्रमाण n = 3 इन अवस्था में पुनर्गठित किया जा सकता है। पूरी सूची n जिसके लिए Q(ζn) अद्वितीय गुणनखंड है[2]
- 1 से 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 54, 60, 66, 70, 84 , 90.
अर्न्स्ट कुमेर ने अद्वितीय कारककरण की विफलता से निपटने की विधि खोजा। उन्होंने साइक्लोटोमिक पूर्णांकों में अभाज्य संख्याओं के लिए प्रतिस्थापन प्रस्तुत किया Z[ζn], वर्ग संख्या (संख्या सिद्धांत) के माध्यम से अद्वितीय गुणनखंडन की विफलता को मापा hn और सिद्ध कर दिया, कि यदि hp प्रधान द्वारा विभाज्य नहीं है p (ऐसा p नियमित अभाज्य कहलाते हैं) तो प्रारूप का प्रमेय प्रतिपादक के लिए सत्य है n = p. इसके अतिरिक्त , कुमेर की निकष यह निर्धारित करने के लिए हैं। कि कौन से अभाज्य नियमित हैं और सभी प्रमुख प्रतिपादकों के लिए प्रारूप के प्रमेय की स्थापना की p 100 से कम, अनियमित अभाज्य संख्या 37 (संख्या), 59 (संख्या), और 67 (संख्या) को छोड़कर है। 20वीं सदी में इवासावा सिद्धांत में केनकिची इवासावा द्वारा और कुबोटा और लियोपोल्ड द्वारा P-एडिक जीटा कार्य करता है। अपने सिद्धांत में साइक्लोटॉमिक क्षेत्रों की कक्षा संख्याओं के लिए कुमेर का कार्य सामान्यीकृत किया गया था।
चक्रीय क्षेत्रों की वर्ग संख्याओं की सूची
(sequence A061653 in the OEIS), या OEIS: A055513 या OEIS: A000927 के लिए -भाग (अभाज्य n के लिए)
- 1-22: 1
- 23: 3
- 24-28: 1
- 29: 8
- 30: 1
- 31: 9
- 32-36: 1
- 37: 37
- 38: 1
- 39: 2
- 40: 1
- 41: 121
- 42: 1
- 43: 211
- 44: 1
- 45: 1
- 46: 3
- 47: 695
- 48: 1
- 49: 43
- 50: 1
- 51: 5
- 52: 3
- 53: 4889
- 54: 1
- 55: 10
- 56: 2
- 57: 9
- 58: 8
- 59: 41241
- 60: 1
- 61: 76301
- 62: 9
- 63: 7
- 64: 17
- 65: 64
- 66: 1
- 67: 853513
- 68: 8
- 69: 69
- 70: 1
- 71: 3882809
- 72: 3
- 73: 11957417
- 74: 37
- 75: 11
- 76: 19
- 77: 1280
- 78: 2
- 79: 100146415
- 80: 5
- 81: 2593
- 82: 121
- 83: 838216959
- 84: 1
- 85: 6205
- 86: 211
- 87: 1536
- 88: 55
- 89: 13379363737
- 90: 1
- 91: 53872
- 92: 201
- 93: 6795
- 94: 695
- 95: 107692
- 96: 9
- 97: 411322824001
- 98: 43
- 99: 2883
- 100: 55
- 101: 3547404378125
- 102: 5
- 103: 9069094643165
- 104: 351
- 105: 13
- 106: 4889
- 107: 63434933542623
- 108: 19
- 109: 161784800122409
- 110: 10
- 111: 480852
- 112: 468
- 113: 1612072001362952
- 114: 9
- 115: 44697909
- 116: 10752
- 117: 132678
- 118: 41241
- 119: 1238459625
- 120: 4
- 121: 12188792628211
- 122: 76301
- 123: 8425472
- 124: 45756
- 125: 57708445601
- 126: 7
- 127: 2604529186263992195
- 128: 359057
- 129: 37821539
- 130: 64
- 131: 28496379729272136525
- 132: 11
- 133: 157577452812
- 134: 853513
- 135: 75961
- 136: 111744
- 137: 646901570175200968153
- 138: 69
- 139: 1753848916484925681747
- 140: 39
- 141: 1257700495
- 142: 3882809
- 143: 36027143124175
- 144: 507
- 145: 1467250393088
- 146: 11957417
- 147: 5874617
- 148: 4827501
- 149: 687887859687174720123201
- 150: 11
- 151: 2333546653547742584439257
- 152: 1666737
- 153: 2416282880
- 154: 1280
- 155: 84473643916800
- 156: 156
- 157: 56234327700401832767069245
- 158: 100146415
- 159: 223233182255
- 160: 31365
यह भी देखें
- क्रोनकर-वेबर प्रमेय
- चक्रीय बहुपद
संदर्भ
- ↑ Washington 1997, Proposition 2.7.
- ↑ Washington 1997, Theorem 11.1.
स्रोत
- ब्रायन जॉन बिर्च, साइक्लोटोमिक क्षेत्र और कुमेर विस्तार, J.W.S में। कैसल्स और ए. फ्रॉलिच (edd), बीजगणितीय संख्या सिद्धांत, अकादमिक प्रेस, 1973। चैप.III, पीपी। 45-93।
- डेनियल ए. मार्कस, नंबर फील्ड्स, पहला संस्करण, स्प्रिंगर-वेरलाग, 1977
- वाशिंगटन, Lawrence C. (1997), साइक्लोटोमिक क्षेत्र का परिचय, गणित में स्नातक ग्रंथ, vol. 83 (2 ed.), न्यू यार्क: स्प्रिंगर-वर्लाग, doi:10.1007/978-1-4612-1934-7, ISBN 0-387-94762-0, MR 1421575
- सर्ज लैंग, साइक्लोटॉमिक क्षेत्र I और II, संयुक्त दूसरा संस्करण। कार्ल रुबिन द्वारा परिशिष्ट के साथ। गणित में स्नातक ग्रंथ, 121। स्प्रिंगर-वर्लाग, न्यूयॉर्क, 1990। ISBN 0-387-96671-4
अग्रिम पठन
- कोट्स, जॉन; सुजाता, R. (2006). साइक्लोटोमिक क्षेत्र और जीटा वैल्यू. गणित में स्प्रिंगर मोनोग्राफ. स्प्रिंगर-वेरलाग. ISBN 3-540-33068-2. Zbl 1100.11002.
- Weisstein, Eric W. क्षेत्र.html "साइक्लोटोमिक क्षेत्र". MathWorld.
{{cite web}}
: Check|url=
value (help) - "साइक्लोटोमिक क्षेत्र", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- वास्तविक साइक्लोटॉमिक क्षेत्र के पूर्णांकों के वलय पर। कोजी यामागाटा और मसाकाजू यामागिशी: प्रोक, जापान अकादमी, 92. सर् ए (2016 )