सुव्यवस्थित सिद्धांत
This article needs additional citations for verification. (July 2008) (Learn how and when to remove this template message) |
गणित में, सुव्यवस्थित सिद्धांत बताता है कि सकारात्मक पूर्णांकों के प्रत्येक गैर-खाली सेट में कम से कम तत्व होता है।[1] दूसरे शब्दों में, धनात्मक पूर्णांकों का समुच्चय अपने प्राकृतिक या परिमाण क्रम द्वारा सुव्यवस्थित होता है जिसमें पछाड़ अगर और केवल अगर भी है या का योग और कुछ सकारात्मक पूर्णांक (अन्य ऑर्डरिंग में ऑर्डरिंग शामिल है ; और ).
वाक्यांश सुव्यवस्थित सिद्धांत को कभी-कभी सुव्यवस्थित प्रमेय का पर्यायवाची माना जाता है। अन्य अवसरों पर यह प्रस्ताव समझा जाता है कि पूर्णांकों का समुच्चय एक सुव्यवस्थित उपसमुच्चय होता है | सुव्यवस्थित उपसमुच्चय, जिसे प्राकृतिक संख्या कहा जाता है, जिसमें प्रत्येक गैर-रिक्त उपसमुच्चय में कम से कम तत्व होता है।
गुण
उस ढाँचे पर निर्भर करता है जिसमें प्राकृतिक संख्याएँ प्रस्तुत की जाती हैं, प्राकृतिक संख्याओं के समुच्चय की यह (द्वितीय क्रम) संपत्ति या तो एक स्वयंसिद्ध या एक सिद्ध प्रमेय है। उदाहरण के लिए:
- पीआनो अंकगणित, दूसरे क्रम के अंकगणित और संबंधित प्रणालियों में, और वास्तव में सुव्यवस्थित सिद्धांत के अधिकांश (आवश्यक रूप से औपचारिक नहीं) गणितीय उपचारों में, सिद्धांत गणितीय आगमन के सिद्धांत से लिया गया है, जिसे स्वयं बुनियादी रूप में लिया जाता है।
- प्राकृतिक संख्याओं को वास्तविक संख्याओं के सबसेट के रूप में देखते हुए, और यह मानते हुए कि हम पहले से ही जानते हैं कि वास्तविक संख्याएँ पूर्ण हैं (फिर से, या तो एक स्वयंसिद्ध या वास्तविक संख्या प्रणाली के बारे में एक प्रमेय के रूप में), अर्थात, प्रत्येक परिबद्ध (नीचे से) सेट में एक इन्फिनमम है, फिर भी हर सेट प्राकृतिक संख्या में एक अनंत है, कहते हैं . अब हम एक पूर्णांक पा सकते हैं ऐसा है कि आधे खुले अंतराल में स्थित है , और फिर दिखा सकते हैं कि हमारे पास होना चाहिए , और में.
- स्वयंसिद्ध समुच्चय सिद्धांत में, प्राकृतिक संख्याओं को सबसे छोटे आगमनात्मक समुच्चय (अनंत का अभिगृहीत) के रूप में परिभाषित किया जाता है (अर्थात्, 0 युक्त समुच्चय और परवर्ती संक्रिया के अंतर्गत बंद)। कोई भी (नियमितता के स्वयंसिद्ध को लागू किए बिना भी) दिखा सकता है कि सभी प्राकृतिक संख्याओं का समुच्चय ऐसा है कि सुव्यवस्थित है आगमनात्मक है, और इसलिए इसमें सभी प्राकृतिक संख्याएँ होनी चाहिए; इस संपत्ति से यह निष्कर्ष निकाला जा सकता है कि सभी प्राकृतिक संख्याओं का समुच्चय भी सुव्यवस्थित है।
दूसरे अर्थ में, इस वाक्यांश का उपयोग तब किया जाता है जब उस प्रस्ताव पर सबूतों को सही ठहराने के उद्देश्य से भरोसा किया जाता है जो निम्नलिखित रूप लेते हैं: यह साबित करने के लिए कि प्रत्येक प्राकृतिक संख्या एक निर्दिष्ट सेट से संबंधित है , इसके विपरीत मान लें, जिसका अर्थ है कि प्रतिउदाहरणों का समुच्चय खाली नहीं है और इस प्रकार इसमें सबसे छोटा प्रतिउदाहरण शामिल है। फिर दिखाएं कि किसी भी प्रति उदाहरण के लिए एक और भी छोटा प्रति उदाहरण है, जो एक विरोधाभास पैदा करता है। तर्क का यह तरीका पूर्ण आगमन द्वारा प्रमाण का प्रतिधनात्मक है। इसे हल्के-फुल्के अंदाज में न्यूनतम आपराधिक पद्धति के रूप में जाना जाता है[citation needed] और इसकी प्रकृति में Fermat|Fermat की अनंत वंशानुक्रम की विधि के समान है।
गैरेट बिरखॉफ और सॉन्डर्स मैक लेन ने आधुनिक बीजगणित के एक सर्वेक्षण में लिखा है कि यह संपत्ति, वास्तविक संख्याओं के लिए कम से कम ऊपरी बाध्य स्वयंसिद्ध की तरह, गैर-बीजीय है; यानी, इसे पूर्णांकों के बीजगणितीय गुणों से नहीं निकाला जा सकता है (जो एक आदेशित अभिन्न डोमेन बनाते हैं)।
संदर्भ
- ↑ Apostol, Tom (1976). Introduction to Analytic Number Theory. New York: Springer-Verlag. pp. 13. ISBN 0-387-90163-9.