कक्षीय अंतरिक्ष उड़ान

From Vigyanwiki
Revision as of 16:06, 31 January 2023 by alpha>Neetua08
स्पेस शटल डिस्कवरी रॉकेट कक्षीय वेग के लिए, बूस्टर पृथक्करण के ठीक बाद यहां देखा गया

एक कक्षीय अंतरिक्ष यान (या कक्षीय उड़ान) एक अंतरिक्ष उड़ान है जिसमें एक अंतरिक्ष यान एक प्रक्षेपवक्र पर रखा जाता है जहां वह कम से कम एक कक्षा के लिए बाह्य अंतरिक्ष में रह सकता है। इस भूकेंद्रीय कक्षा को पूरा करने के लिए इसे एक मुक्त प्रक्षेपवक्र पर होना चाहिए जिसकी ऊंचाई एप्स (निकटतम दृष्टिकोण पर ऊंचाई) 80 kilometers (50 mi) के आसपास हो। यह एक बाहरी अंतरिक्ष सीमा है जैसा कि नासा, संयुक्त राज्य वायु सेना और संघीय उड्डयन प्रशासन द्वारा परिभाषित किया गया है। इस ऊंचाई पर कक्षा में बने रहने के लिए ~7.8किमी/सेकंड की कक्षीय गति की आवश्यकता होती है। उच्चतर कक्षाओं के लिए कक्षीय गति धीमी होती है, किन्तु उन्हें प्राप्त करने के लिए अधिक डेल्टा-वी की आवश्यकता होती है। फेडरेशन एरोनॉटिक इंटरनेशनेल ने 100 km (62 mi) की ऊंचाई पर कर्मन लाइन की स्थापना की है। वैमानिकी और अंतरिक्ष यात्रियों के बीच की सीमा के लिए एक कार्य परिभाषा के रूप में इसका उपयोग लगभग 100 km (62 mi) की ऊंचाई पर होने के कारण किया जाता है जैसा कि थियोडोर वॉन कार्मन गणना के अनुसार एक वाहन को स्वयं को सहारा देने के लिए वातावरण से पर्याप्त वायुगतिकीय लिफ्ट प्राप्त करने के लिए कक्षीय गति से तेज यात्रा करनी होगी।[1]: 84 Cite error: Closing </ref> missing for <ref> tag


कक्षीय प्रक्षेपण

Orbital human spaceflight
Spacecraft First launch Last launch Launches
Vostok 1961 1963 6
Mercury 1962 1963 4
Voskhod 1964 1965 2
Gemini 1965 1966 10
Soyuz 1967 Ongoing 146
Apollo 1968 1975 15
Shuttle 1981 2011 134
Shenzhou 2003 Ongoing 9
Crew Dragon 2020 Ongoing 7
Total - - 333

पृथ्वी से कक्षीय अंतरिक्ष उड़ान केवल लॉन्च वाहनों द्वारा प्राप्त की गई है जो प्रणोदन के लिए राकेट इंजन का उपयोग करते हैं। कक्षा तक पहुँचने के लिए रॉकेट के पेलोड को लगभग 9.3–10 किमी/सेकेंड का डेल्टा-वी प्रदान करना चाहिए। यह आंकड़ा मुख्य रूप से (~7.8किमी/सेकंड ) क्षैतिज त्वरण के लिए कक्षीय गति तक पहुँचने के लिए आवश्यक है, किन्तु वायुमंडलीय ड्रैग (20 मीटर लंबे घने ईंधन वाले वाहन के बैलिस्टिक गुणांक के साथ लगभग 300मी/सेकंड), गुरुत्वाकर्षण हानियाँ (जलने का समय और प्रक्षेपवक्र और लॉन्च वाहन का विवरण के आधार पर निर्भर करता है ), और ऊंचाई प्राप्त करना के लिए अनुमति देता है।

मुख्य सिद्ध प्रणाली में ग्रेविटी टर्न का प्रदर्शन करते हुए कुछ किलोमीटर के लिए लगभग लंबवत रूप से लॉन्च करना सम्मिलित है, और फिर उत्तरोत्तर 170+ किमी की ऊँचाई पर प्रक्षेपवक्र को समतल करना और एक क्षैतिज प्रक्षेपवक्र (गुरुत्वाकर्षण से लड़ने और ऊंचाई बनाए रखने के लिए ऊपर की ओर रॉकेट के साथ) को 5-8 मिनट तक जलाना जब तक कि कक्षीय वेग प्राप्त नहीं हो जाता। वर्तमान में, आवश्यक डेल्टा-वी प्राप्त करने के लिए 2-4 मल्टीस्टेज रॉकेट की आवश्यकता होती है। अधिकांश लॉन्च खर्च करने योग्य प्रक्षेपण प्रणाली द्वारा होते हैं।

छोटे उपग्रहों के लिए पेगासस रॉकेट इसके अतिरिक्त एक विमान से 39,000 ft (12 km) ऊंचाई पर लॉन्च होता है।

ऑर्बिटल स्पेस फ्लाइट प्राप्त करने के लिए कई प्रस्तावित विधियाँ हैं जिनमें रॉकेट की तुलना में अधिक प्रभावकारी होने की क्षमता है। इनमें से कुछ विचार जैसे कि अंतरिक्ष लिफ्ट, और रोटोवेटर (टीथर प्रोपल्शन), को वर्तमान में ज्ञात किसी भी सामग्री की तुलना में बहुत शक्तिशाली नई सामग्री की आवश्यकता होती है। अन्य प्रस्तावित विचारों में लॉन्च लूप्स, रॉकेट असिस्टेड एयरक्राफ्ट या स्पेसप्लेन जैसे रिएक्शन इंजन स्काईलोन, स्क्रैमजेट पावर्ड स्पेसप्लेन और आरबीसीसी पावर्ड स्पेसप्लेन जैसे ग्राउंड एक्सेलेरेटर सम्मिलित हैं। कार्गो के लिए एक गन लॉन्च भी प्रस्तावित किया गया है।

2015 से स्पेस-एक्स ने कक्षीय स्पेस फ्लाइट की लागत को कम करने के लिए अपने अधिक वृद्धिशील दृष्टिकोण में महत्वपूर्ण प्रगति का प्रदर्शन किया है। लागत में कमी के लिए उनकी क्षमता मुख्य रूप से उनके स्पेस-एक्स पुन: प्रयोज्य प्रक्षेपण प्रणाली विकास कार्यक्रम बूस्टर स्टेज के साथ-साथ उनके स्पेस-एक्स ड्रैगन के साथ प्रणोदक लैंडिंग से आती है, किन्तु इसमें अन्य घटकों का पुन: उपयोग भी सम्मिलित है जैसे पेलोड फेयरिंग जैसे अन्य घटकों का पुन: उपयोग और प्रत्यक्ष धातु लेजर सिंटरिंग(3D प्रिंटिंग) के कुशल उपयोग भी सम्मिलित हैअधिक कुशल से रॉकेट इंजन बनाने के लिए एक सुपर मिश्रधातु है, जैसे कि उनका सुपरड्रैको अक कुशल प्रयोग सबित हुआ। इन सुधारों के प्रारंभिक चरण परिमाण के क्रम से एक कक्षीय प्रक्षेपण की लागत को कम कर सकते हैं।[2]

स्थिरता

2001 में भूकेंद्रीय कक्षा में इसके निर्माण के समय अंतर्राष्ट्रीय अंतरिक्ष स्टेशन। इसकी कक्षा को बनाए रखने के लिए इसे समय-समय पर फिर से बढ़ाया जाना चाहिए।

लगभग 200 किमी से कम की ऊंचाई पर कक्षा में किसी वस्तु को वायुमंडलीय खिंचाव के कारण अस्थिर माना जाता है। एक उपग्रह के स्थिर कक्षा में होने के लिए (अर्थात कुछ महीनों से अधिक के लिए टिकाऊ), पृथ्वी की निचली कक्षा के लिए 350 किमी अधिक मानक ऊंचाई है। उदाहरण के लिए, 1 फरवरी 1958 को एक्सप्लोरर 1 उपग्रह को 358 kilometers (222 mi).[3] की उपभू के साथ एक कक्षा में लॉन्च किया गया था। 31 मार्च 1970 को प्रशांत महासागर के ऊपर वायुमंडलीय पुन: प्रवेश से पहले यह 12 वर्षों से अधिक समय तक कक्षा में रहा।

यद्यपि, कक्षा में वस्तुओं का स्पष्ट व्यवहार ऊंचाई, उनके बैलिस्टिक गुणांक और अंतरिक्ष के मौसम के विवरण पर निर्भर करता है जो ऊपरी वायुमंडल की ऊंचाई को प्रभावित कर सकता है।

कक्षाएँ

पृथ्वी के चारों ओर कक्षा के तीन मुख्य बैंड हैं: पृथ्वी की निम्न कक्षा (LEO), पृथ्वी की मध्यम कक्षा (MEO) और भूस्थैतिक कक्षा (GEO)।

कक्षीय यांत्रिकी के अनुसार, एक कक्षा पृथ्वी के चारों ओर एक विशेष, अधिक समय तक स्थिर तल में स्थित है, जो पृथ्वी के केंद्र के साथ मेल खाता है, और भूमध्य रेखा के संबंध में झुका हो सकता है। अंतरिक्ष यान की सापेक्ष गति और पृथ्वी की सतह की गति, जैसा कि पृथ्वी अपनी धुरी पर घूमती है, उस स्थिति को निर्धारित करती है कि अंतरिक्ष यान जमीन से आकाश में दिखाई देता है, और पृथ्वी के कौन से हिस्से अंतरिक्ष यान से दिखाई दे रहे हैं।

ग्राउंड ट्रैक की गणना करना संभव है जो दिखाता है कि अंतरिक्ष यान पृथ्वी के किस हिस्से के ठीक ऊपर है; यह कक्षा की कल्पना करने में सहायता करने के लिए उपयोगी है।

कक्षीय पैंतरेबाज़ी

अंतरिक्ष यान में, एक कक्षीय युद्धाभ्यास एक अंतरिक्ष यान की कक्षा को बदलने के लिए अंतरिक्ष यान प्रणोदन प्रणाली का उपयोग होता है। पृथ्वी से दूर अंतरिक्ष यान के लिए - उदाहरण के लिए जो सूर्य के चारों ओर कक्षाओं में हैं - एक कक्षीय कौशल को डीप-स्पेस कौशल (डीएसएम) कहा जाता है।

डोरबिट और री-एंट्री

लौटने वाले अंतरिक्ष यान (सभी संभावित चालक दल वाले शिल्प सहित) को उच्च वायुमंडलीय परतों में रहते हुए जितना संभव हो उतना धीमा करने की एक विधि खोजना होगा और जमीन से टकराने (lithobraking) अथवा जलने से बचना होगा। कई कक्षीय अंतरिक्ष उड़ानों के लिए, प्रारंभिक मंदी शिल्प के रॉकेट इंजनों के रेट्रोफायर द्वारा प्रदान की जाती है, जो उप-कक्षीय प्रक्षेपवक्र पर कक्षा (वातावरण में पेरिगी को नीचे करके) को परेशान करती है। पृथ्वी की निचली कक्षा में कई अंतरिक्ष यान (जैसे, नैनो उपग्रह या अंतरिक्ष यान जो कक्षीय स्टेशनकीपिंग ईंधन से बाहर हो गए हैं या अन्यथा गैर-कार्यात्मक हैं) प्रारंभिक मंदी प्रदान करने के लिए वायुमंडलीय ड्रैग (aerobraking) का उपयोग करके कक्षीय गति से मंदी की समस्या को हल करते हैं। सभी स्थितियों में, एक बार प्रारंभिक मंदी ने कक्षीय परिधि को मीसोस्फीयर में कम कर दिया है, तथा सभी अंतरिक्ष यान शेष गति को खो देते हैं, और इसलिए गतिज ऊर्जा, एरोब्रेकिंग के वायुमंडलीय ड्रैग प्रभाव के माध्यम से प्रभावित होती है।

लौटते हुए अंतरिक्ष यान को उन्मुख करके जानते हुए भी एरोब्रेकिंग प्राप्त किया जाता है यदि हाईपरसोनिक गति से वातावरण से गुजरने के कारण वायुमंडलीय संपीड़न और घर्षण से उत्पन्न उच्च तापमान से बचाने के लिए शॉकवेव को वायुमंडल की ओर आगे बढ़ाया जा सके। थर्मल ऊर्जा मुख्य रूप से वाहन में प्रवेश करने वाली गर्मी को कम करने के उद्देश्य से, ब्लंट हीट शील्ड आकार का उपयोग करके वाहन के आगे एक शॉकवेव में हवा को गर्म करके गर्म किया जाता है।

सब-ऑर्बिटल अंतरिक्ष उड़ानें, बहुत कम गति पर होने के कारण कहीं भी पुन: प्रवेश पर उतनी गर्मी उत्पन्न नहीं होती हैं।[further explanation needed]

तथापि परिक्रमा करने वाली वस्तुएं खर्च करने योग्य भी हों, तो अधिकांश[quantify] अंतरिक्ष प्राधिकरण[example needed] ग्रह पर जीवन और संपत्ति के खतरे को कम करने के लिए नियंत्रित पुनर्प्रवेश को जोर दे रहे हैं।[citation needed]


इतिहास

  • स्पुतनिक-1 कक्षीय अंतरिक्ष उड़ान प्राप्त करने वाली पहली मानव निर्मित वस्तु थी। इसे सोवियत संघ द्वारा 4 अक्टूबर 1957 को लॉन्च किया गया था।
  • 12 अप्रैल 1961 को सोवियत संघ द्वारा लॉन्च किया गया वोस्तोक 1, लिली कली तराजू को ले जाने वाला, पृथ्वी की कक्षा में पहुंचने वाला पहला सफल मानव अंतरिक्ष यान था।
  • 16 जून 1963 को सोवियत संघ द्वारा लॉन्च किया गया वोस्तोक 6, वेलेंटीना तेरेश्कोवा को ले जाने वाला, पृथ्वी की कक्षा में पहुंचने वाला पहला सफल अंतरिक्ष यान था।
  • 30 मई 2020 को स्पेसएक्स और संयुक्त राज्य अमेरिका द्वारा लॉन्च किया गया क्रू ड्रैगन डेमो -2, एक निजी कंपनी द्वारा पृथ्वी की कक्षा में पहुंचने वाला पहला सफल मानव अंतरिक्ष यान था।

यह भी देखें

संदर्भ

  1. O'Leary, Beth Laura (2009). Darrin, Ann Garrison (ed.). Handbook of space engineering, archaeology, and heritage. Advances in engineering. CRC Press. ISBN 978-1-4200-8431-3.
  2. Belfiore, Michael (9 December 2013). "The Rocketeer". Foreign Policy. Archived from the original on 10 December 2013. Retrieved 11 December 2013.
  3. "Explorer 1 – NSSDC ID: 1958-001A". NASA. Archived from the original on 27 May 2019. Retrieved 21 August 2019.