सोलर थर्मल रॉकेट

From Vigyanwiki
Revision as of 13:51, 4 February 2023 by alpha>Artiverma

सौर तापीय रॉकेट सैद्धांतिक अंतरिक्ष यान प्रणोदन प्रणाली है जो सीधे प्रतिक्रिया द्रव्यमान को गर्म करने के लिए सौर ऊर्जा का उपयोग करेगी, और इसलिए विद्युत जनरेटर की आवश्यकता नहीं होगी, जैसे कि सौर-संचालित प्रणोदन के अधिकांश अन्य रूप। रॉकेट को केवल सौर ऊर्जा पर अधिग्रहण करने के साधनों को ले जाना होगा, जैसे कि सौर ऊर्जा और दर्पण। शक्ति उत्पन्न करने के लिए गर्म प्रणोदक को एक पारंपरिक रॉकेट नोजल के माध्यम से सिंचित किया जाएगा। इसका इंजन थ्रस्ट सीधे सौर कलेक्टर के सतह क्षेत्र और सौर विकिरण की स्थानीय तीव्रता से संबंधित होगा।

अल्प अवधि में, सौर तापीय प्रणोदन को लंबे जीवन, कम लागत, सूर्य के अधिक कुशल उपयोग और अधिक लचीले क्रायोजेनिक ऊपरी चरण के लॉन्च वाहनों और ऑन-ऑर्बिट प्रणोदक डिपो दोनों के लिए प्रस्तावित किया गया है। पुन: प्रयोज्य इंटर-ऑर्बिटल टग्स में उपयोग के लिए सौर तापीय प्रणोदन भी एक अच्छा उदहारण है, क्योंकि यह उच्च दक्षता वाली कम-थ्रस्ट प्रणाली है जिसके सापेक्ष सरलता से ईंधन भरा जा सकता है।

सौर-तापीय डिजाइन अवधारणाएं

दो सौर तापीय प्रणोदन अवधारणाएँ हैं, जो मुख्य रूप से प्रणोदक को गर्म करने के लिए सौर ऊर्जा का उपयोग करने की विधि में भिन्न हैं :[citation needed]

  • अप्रत्यक्ष सौर तापन में प्रणोदक को सौर विकिरण द्वारा गर्म किए गए उष्मा का आदान प्रदान करने वाला में पैसेज के माध्यम से पंप करना सम्मिलित है। विंडोलेस हीट एक्सचेंजर कैविटी अवधारणा इस विकिरण अवशोषण दृष्टिकोण को अपनाने वाला एक निर्माण है।
  • प्रत्यक्ष सौर तापन में प्रणोदक को सीधे सौर विकिरण के संपर्क में लाना सम्मिलित है। रोटेटिंग बेड अवधारणा प्रत्यक्ष सौर विकिरण अवशोषण के लिए रुचिकर अवधारणाओं में से एक है; यह स्थायी बीज (टैंटलम करबैड या हेफ़नियम कार्बाइड) दृष्टिकोण का उपयोग करके अन्य प्रत्यक्ष ताप डिजाइनों की तुलना में उच्च विशिष्ट आवेग प्रदान करता है। प्रणोदक एक घूर्णन सिलेंडर की झरझरा दीवारों के माध्यम से बहता है, बीजों से ऊष्मा उठाता है, जो कि दीवारों पर रोटेशन द्वारा बनाए रखा जाता है। कार्बाइड उच्च तापमान पर स्थिर होते हैं और उत्कृष्ट ऊष्मा हस्तांतरण गुण होते हैं।

ताप विनिमायक सामग्री (लगभग 2800 केल्विन) का सामना कर सकने वाले तापमान की सीमाओं के कारण, अप्रत्यक्ष अवशोषण निर्माण 900 सेकंड (9 kN · s/kg = 9 किमी/s) (या 1000 सेकंड तक) से अधिक विशिष्ट आवेग प्राप्त नहीं कर सकते हैं, देखें नीचे)। प्रत्यक्ष अवशोषण निर्माण उच्च प्रणोदक तापमान और इसलिए उच्च विशिष्ट आवेगों की अनुमति देते हैं, जो 1200 सेकंड तक पहुंचते हैं। यहां तक ​​कि अल्प विशिष्ट आवेग पारंपरिक रासायनिक रॉकेटों की तुलना में एक महत्वपूर्ण वृद्धि का प्रतिनिधित्व करता है, चूंकि, वृद्धि जो यात्रा के समय (14) दिन 10 घंटे की तुलना में) में वृद्धि की कीमत पर पर्याप्त पेलोड लाभ (कम पृथ्वी कक्षा-से-जियोसिंक्रोनस कक्षा मिशन के लिए 45 प्रतिशत) प्रदान कर सकती है।[citation needed]

ग्राउंड टेस्ट मूल्यांकन के लिए वायु सेना रॉकेट प्रणोदन प्रयोगशाला (एएफआरपीएल) के लिए छोटे पैमाने के हार्डवेयर को डिजाइन और निर्मित किया गया है।[1] एसएआरटी द्वारा 10 से 100 एन प्रणोद वाले प्रणाली की जांच की गई है।[2] पुन: प्रयोज्य कक्षीय स्थानांतरण वाहन (ओटीवी), जिसे कभी-कभी (इंटर-ऑर्बिटल) स्पेस टग्स कहा जाता है, सौर तापीय रॉकेट द्वारा संचालित प्रस्तावित किया गया है। सौर विद्युत ओटीवी के सौर सरणियों की तुलना में वैन एलन बेल्ट में सौर तापीय टगों पर संकेंद्रण विकिरण के प्रति कम संवेदनशील होते हैं।[3]

अमोनिया को प्रणोदक के रूप में प्रस्तावित किया गया है।[4] यह पानी की तुलना में उच्च विशिष्ट आवेग प्रदान करता है, लेकिन -77 डिग्री सेल्सियस के हिमांक बिंदु और -33.34 डिग्री सेल्सियस के क्वथनांक के साथ सरलता से संग्रहित किया जा सकता है। निकास हाइड्रोजन और नाइट्रोजन में भिन्न हो जाता है, जिससे कम औसत आणविक भार होता है, और इस प्रकार उच्च आईएसपी (हाइड्रोजन का 65%) होता है।[citation needed]

सौर-तापीय प्रणोदन आर्किटेक्चर इलेक्ट्रोलिसिस और पानी से हाइड्रोजन के द्रवीकरण से जुड़े आर्किटेक्चर को परिमाण के क्रम से अधिक से उत्तम बनाता है, क्योंकि इलेक्ट्रोलिसिस के लिए भारी शक्ति जनरेटर की आवश्यकता होती है, जबकि आसवन के लिए केवल सरल और सघन ताप स्रोत (या तो परमाणु या सौर) की आवश्यकता होती है; इसलिए प्रणोदक उत्पादन दर उपकरण के किसी भी प्रारंभिक द्रव्यमान के लिए संगत रूप से कहीं अधिक है। चूंकि इसका उपयोग सौर प्रणाली में जल बर्फ के स्थान के स्पष्ट विचारों पर निर्भर करता है, विशेष रूप से चंद्र और क्षुद्रग्रह निकायों पर, और ऐसी जानकारी ज्ञात नहीं है, इसके अतिरिक्त कि क्षुद्रग्रह बेल्ट के भीतर और सूर्य से आगे के निकायों की अपेक्षा की जाती है। जल बर्फ से समृद्ध होना।[5]


ग्राउंड लॉन्च के लिए सौर-तापीय

कक्षा में छोटे व्यक्तिगत अंतरिक्ष यान को प्रक्षेपित करने के लिए एक प्रणाली के रूप में सौर तापीय रॉकेट प्रस्तावित किए गए हैं [6]। इसका निर्माण उच्च ऊंचाई वाले हवाई पोत पर आधारित है जो नली पर सूर्य के प्रकाश को केंद्रित करने के लिए अपने आवरण का उपयोग करता है। प्रणोदक, जो संभवतः अमोनिया होगा, को शक्ति देने के लिए सिंचित किया जाता है। संभावित निर्माण दोषों में सम्मिलित है कि क्या इंजन ड्रैग को दूर करने के लिए पर्याप्त शक्ति उत्त्पन्न कर सकता है, और क्या हवाई पोत की त्वचा हाइपरसोनिक वेगों में विफल नहीं होगी। जेपी एयरोस्पेस द्वारा प्रस्तावित कक्षीय हवाई पोत में इसकी कई समानताएं हैं।

प्रस्तावित सौर-तापीय अंतरिक्ष प्रणाली

As of 2010, इन-स्पेस पोस्ट-लॉन्च अंतरिक्ष यान प्रणालियों पर सौर-तापीय प्रणोदन का उपयोग करने के लिए दो प्रस्ताव किए गए थे।

लो अर्थ ऑर्बिट (एलइओ) प्रणोदक डिपो प्रदान करने के लिए एक अवधारणा जिसे अन्य अंतरिक्ष यान के लिए मार्ग-स्टेशनों के रूप में उपयोग किया जा सकता है और आगे-एलइओ मिशनों के रास्ते में ईंधन भरने के लिए प्रस्तावित किया गया है कि अपशिष्ट गैसीय हाइड्रोजन-दीर्घकालिक तरल का एक अनिवार्य उपोत्पाद है। अंतरिक्ष के विकिरण ताप वातावरण में हाइड्रोजन का भंडारण- सौर-तापीय प्रणोदन प्रणाली में मोनोप्रोपेलेंट रॉकेट के रूप में प्रयोग योग्य होगा। अपशिष्ट हाइड्रोजन का उपयोग कक्षीय स्टेशनकीपिंग और अंतरिक्ष यान दृष्टिकोण नियंत्रण दोनों के लिए उपयोगी रूप से किया जाएगा, साथ ही ऑर्बिटल पैंतरेबाज़ी गैर-आवेगपूर्ण युद्धाभ्यास के लिए उपयोग करने के लिए सीमित प्रणोदक और थ्रस्ट प्रदान करने के लिए अन्य अंतरिक्ष यान के साथ उन्नत अंतरिक्ष मिलन स्थल के लिए उपयोग किया जाएगा जो ईंधन प्राप्त करने के लिए इनबाउंड डिपो होगा।[7] सोलर-थर्मल मोनोप्रॉप हाइड्रोजन थ्रस्टर भी संयुक्त राज्य अमेरिका द्वारा प्रस्तावित अगली पीढ़ी के क्रायोजेनिक अपर स्टेज राकेट के निर्माण के अभिन्न अंग हैं। अमेरिकी कंपनी यूनाइटेड लॉन्च एलायंस (यूएलए) द्वारा प्रस्तावित अगली पीढ़ी के क्रायोजेनिक ऊपरी चरण रॉकेट के डिजाइन के लिए सौर-तापीय मोनोप्रॉप हाइड्रोजन थ्रस्टर्स भी अभिन्न हैं। उन्नत क्रायोजेनिक विकसित चरण (एसीइएस) का उद्देश्य कम लागत, अधिक सक्षम और अधिक लचीले ऊपरी चरण के रूप में था, जो वर्तमान यूएलए सेंटौर (रॉकेट चरण) और यूएलए डेल्टा IV वाहन विवरण (डीसीएसएस) को पूरक और संभवतः प्रतिस्थापित करेगा। एसीइएस एकीकृत वाहन तरल पदार्थ विकल्प अंतरिक्ष यान से सभी हाइड्राज़ीन मोनोप्रोपेलेंट और सभी हीलियम प्रेशरेंट को समाप्त कर देता है -सामान्यतः रवैया नियंत्रण और स्टेशन कीपिंग के लिए उपयोग किया जाता है - और इसके अतिरिक्त अपशिष्ट हाइड्रोजन का उपयोग करने वाले सौर-थर्मल मोनोप्रॉप थ्रस्टर्स पर निर्भर करता है।[7]: p. 5 [needs update]

2003 में गॉर्डन वुडकॉक और डेव बायर्स द्वारा सौर तापीय प्रणोदन का उपयोग करते हुए विभिन्न यात्राओं की व्यवहार्यता की जांच की गई।[clarification needed][8]

2010 के दशक में बाद का प्रस्ताव सौर मोथ अंतरिक्ष यान था जो सौर तापीय इंजन पर सौर विकिरण को केंद्रित करने के लिए हल्के दर्पणों का उपयोग करेगा।[9][10]


यह भी देखें

संदर्भ

  1. Solar Thermal Propulsion for Small Spacecraft - Engineering System Development and Evaluation PSI-SR-1228 publisher AIAA July 2005
  2. Webpage DLR Solar Thermal Propulsion of the Institut für Raumfahrtantriebe Abteilung Systemanalyse Raumtransport (SART) date = November 2006 Archived 2007-07-06 at the Wayback Machine
  3. John H. Schilling, Frank S. Gulczinski III. "मिड-टर्म पावर और प्रोपल्शन विकल्पों का उपयोग करते हुए ऑर्बिट ट्रांसफर व्हीकल कॉन्सेप्ट की तुलना" (PDF). Retrieved May 23, 2018.</रेफरी> जॉन्स हॉपकिन्स यूनिवर्सिटी एप्लाइड फिजिक्स लेबोरेटरी सोलर सिम्युलेटर में हीलियम के साथ 2020 में अवधारणा का एक प्रारंभिक प्रमाण प्रदर्शित किया गया था। रेफरी>Oberhaus, Daniel (20 November 2020). "एक सौर-संचालित रॉकेट इंटरस्टेलर स्पेस के लिए हमारा टिकट हो सकता है". Wired.</रेफरी>

    प्रणोदक

    सौर तापीय रॉकेटों के लिए अधिकांश प्रस्तावित डिज़ाइन अपने कम आणविक भार के कारण हाइड्रोजन को प्रणोदक के रूप में उपयोग करते हैं जो रेनियम से बने हीट एक्सचेंजर्स का उपयोग करके 1000 सेकंड (10 kN·s/kg) तक का उत्कृष्ट विशिष्ट आवेग देता है।<ref name=ultramet_rhenium>Ultramet. "उन्नत प्रणोदन अवधारणाएँ - सौर तापीय प्रणोदन". Ultramet. Retrieved June 20, 2012.</रेफरी>

    पारंपरिक विचार यह रहा है कि हाइड्रोजन - हालांकि यह उत्कृष्ट विशिष्ट आवेग देता है - अंतरिक्ष संग्रहणीय नहीं है। 2010 की शुरुआत में डिजाइन के काम ने हाइड्रोजन बॉयलऑफ को काफी हद तक कम करने के लिए एक दृष्टिकोण विकसित किया है, और आवश्यक रूप से व्यावहारिक दृष्टिकोण से जीरो बॉइल ऑफ (जेडबीओ) प्राप्त करने के लिए आवश्यक इन-स्पेस कार्यों के लिए छोटे शेष बॉइलऑफ उत्पाद का आर्थिक रूप से उपयोग करने के लिए।: p. 3, 4, 7  अन्य पदार्थों का भी उपयोग किया जा सकता है। पानी 190 सेकंड (1.9 केएन·एस/किग्रा) का काफी खराब प्रदर्शन देता है, लेकिन शुद्ध करने और संभालने के लिए केवल साधारण उपकरण की आवश्यकता होती है, और यह अंतरिक्ष में रखने योग्य है और इसे इंटरप्लेनेटरी उपयोग, इन-सीटू संसाधन उपयोग|में उपयोग करने के लिए बहुत गंभीरता से प्रस्तावित किया गया है। -सीटू संसाधन। <ref name = NASA>NASA. "Robotic Asteroid Prospector NIAC Phase 1 Final Report" (PDF). NASA. Retrieved March 11, 2021.

  4. PSI. "लघु अंतरिक्ष यान_इंजीनियरिंग प्रणाली विकास और मूल्यांकन के लिए सौर तापीय प्रणोदन" (PDF). PSI. Retrieved August 12, 2017.
  5. Zuppero, Anthony (2005). "इलेक्ट्रोलिसिस या क्रायोजेनिक्स के बिना गर्मी और पानी का उपयोग करके बृहस्पति के चंद्रमाओं के लिए प्रणोदन" (PDF). Space Exploration 2005. SESI Conference Series. 001. Retrieved June 20, 2012.</रेफरी><ref>Zuppero, Anthony. "new fuel: Near Earth Object fuel (Neofuel, using abundant off-earth resources for interplanetary transport)". Retrieved June 20, 2012.
  6. "Interplanetary transportation» Solar Thermal Ground to Orbit - Solar Thermal Tech to launch". NewMars. Retrieved January 19, 2023.
  7. 7.0 7.1 Zegler, Frank; Bernard Kutter (2010-09-02). "Evolving to a Depot-Based Space Transportation Architecture" (PDF). AIAA SPACE 2010 Conference & Exposition. AIAA. p. 3. Retrieved March 31, 2017. the waste hydrogen that has boiled off happens to be the best known propellant (as a monopropellant in a basic solar-thermal propulsion system) for this task. A practical depot must evolve hydrogen at a minimum rate that matches the station keeping demands.
  8. Byers, Woodcock (2003). "Evaluation of Solar Thermal Propulsion for In-Space Propulsion Application". Results of Evaluation of Solar Thermal Propulsion, AIAA 2003-5029. doi:10.2514/6.2003-5029. {{cite book}}: |journal= ignored (help)
  9. Nick Stevens Graphics, 18 January 2018, accessed 20 January 2019.
  10. Rocket engine performance as a function of exhaust velocity and mass fraction for various spacecraft, Project Rho, accessed 20 January 2019.


बाहरी कड़ियाँ