पैरेटो फ्रंट

From Vigyanwiki
Revision as of 10:49, 21 February 2023 by Admin (talk | contribs)

बहुउद्देश्यीय अनुकूलन में, पैरेटो फ्रंट सभी पारेटो कुशल समाधानों का समुच्चय है।[1] इसे व्यापक रूप से अभियांत्रिकी में उपयोग किया जाता है।[2] यह प्रारूपो को प्रत्येक पैरामीटर की पूरी श्रृंखला पर विचार करने के अतिरक्त कुशल विकल्पों के समुच्चय पर ध्यान केंद्रित करने और इस समुच्चय के भीतर दुविधा को अंत करने की अनुमति देता है।[3][4]

पैरेटो फ्रंटियर का उदाहरण। बॉक्सिंग बिंदु व्यवहार्य विकल्पों का प्रतिनिधित्व करते हैं, और छोटे मूल्यों को बड़े लोगों के लिए पसंद किया जाता है। बिंदु C पेरेटो सीमा पर नहीं है क्योंकि यह बिंदु A और बिंदु B दोनों का प्रभुत्व है। बिंदु A और B पर किसी अन्य का सख्ती से प्रभुत्व नहीं है, और इसलिए यह सीमा पर स्थित है।
उत्पादन-संभावना की सीमा। लाल रेखा पारेटो-कुशल फ्रंटियर का एक उदाहरण है, जहां सीमांत और उसके नीचे का क्षेत्र विकल्पों का एक सतत समुच्चय है। सीमांत पर लाल बिंदु उत्पादन के पारेटो-इष्टतम विकल्पों के उदाहरण हैं। सीमा से दूर के बिंदु, जैसे कि N और K, पारेतो-प्रभावी नहीं हैं, क्योंकि सीमांत पर ऐसे बिंदु मौजूद हैं जो उन पर पारेटो-प्रभुत्व रखते हैं।

परिभाषा

पेरेटो फ्रंटियर, P(Y), को अधिक औपचारिक रूप से निम्नानुसार वर्णित किया जा सकता है। फलन के एक प्रणाली पर विचार करें , जहाँ X मीट्रिक स्थान में व्यवहार्य निर्णयों का एक स्थान है , और Y में मानदंड सदिश का व्यवहार्य समुच्चय है | इस प्रकार है कि .

हम मानते हैं कि मापदंड मानों की अधिमानित दिशाएँ ज्ञात हैं। एक बिंदु दुसरे बिंदु के लिए इस प्रकार अधिमानित किया जाता है की सत्य हो। पेरेटो सीमांत इस प्रकार लिखा गया है:


प्रतिस्थापन की सीमांत दर

अर्थशास्त्र में पैरेटो फ्रंटियर का एक महत्वपूर्ण दृष्टीकोण यह है कि पारेतो-दक्ष आवंटन पर, प्रतिस्थापन की सीमांत दर सभी उपभोक्ताओं के लिए समान होती है।[5] एम उपभोक्ताओं और एन वस्तुओं के साथ एक प्रणाली और प्रत्येक उपभोक्ता के उपयोगिता फलन के रूप में विचार करके औपचारिक वर्णन प्राप्त किया जा सकता है जहां , सभी के लिए मान सदिश है तथा सभी के लिए व्यवहार्यता बाधा है के लिए . पेरेटो इष्टतम आवंटन खोजने के लिए, हम लैग्रैंगियन यांत्रिकी का अधिकतम प्रयोग करते हैं:

जहाँ और गुणक के सदिश हैं। प्रत्येक संबंध में लैग्रैंगियन का आंशिक व्युत्पन्न लेना तथा प्रथम-क्रम स्थितियों की निम्नलिखित प्रणाली को संदर्भित करता है:

जहाँ , के आंशिक व्युत्पन्न को दर्शाता है इसके संबंध में . जहाँ और . उपरोक्त प्रथम-क्रम की स्थिति का अर्थ

है।

इस प्रकार, पारेतो-इष्टतम आवंटन में, प्रतिस्थापन की सीमांत दर सभी उपभोक्ताओं के लिए समान होनी चाहिए।[citation needed]


गणना

कंप्यूटर विज्ञान और उर्जा अभियांत्रिकी में विकल्पों के एक सीमित समुच्चय के पैरेटो फ्रंटियर की गणना के लिए कलन विधि का अध्ययन किया गया है।[6]


अनुमान

चूंकि सभी पारेटो फ्रंट को उत्पन्न करना प्रायः संगणनीय रूप से कठिन होता है, एक अनुमानित पारेटो-फ्रंट की गणना के लिए कलनविधियाँ होती हैं। उदाहरण के लिए, लेग्रियल एट अल।[14] एक समुच्चय S को परेटो-फ्रंट P का 'ε-सन्निकटन' होता हैं, यदि S और P के बीच हॉसडॉर्फ की निर्देशित दूरी अधिक से अधिक ε है। तो d मानो में किसी भी पेरेटो फ्रंट P का ε-अनुमानन (1/ε)d का उपयोग करके पाया जा सकता है।

जित्लर, नोल्स और थिएले[15] विभिन्न मानदंडों पर पारेटो- समुच्चय सन्निकटन के लिए कई कलनविधि की तुलना करते हैं जैसे मापन, एकरूपता और संगणनीय जटिलताए आदि।

संदर्भ

  1. proximedia. "Pareto Front". www.cenaero.be. Retrieved 2018-10-08.
  2. Goodarzi, E., Ziaei, M., & Hosseinipour, E. Z., Introduction to Optimization Analysis in Hydrosystem Engineering (Berlin/Heidelberg: Springer, 2014), pp. 111–148.
  3. Jahan, A., Edwards, K. L., & Bahraminasab, M., Multi-criteria Decision Analysis, 2nd ed. (Amsterdam: Elsevier, 2013), pp. 63–65.
  4. Costa, N. R., & Lourenço, J. A., "Exploring Pareto Frontiers in the Response Surface Methodology", in G.-C. Yang, S.-I. Ao, & L. Gelman, eds., Transactions on Engineering Technologies: World Congress on Engineering 2014 (Berlin/Heidelberg: Springer, 2015), pp. 399–412.
  5. Just, Richard E. (2004). The welfare economics of public policy : a practical approach to project and policy evaluation. Hueth, Darrell L., Schmitz, Andrew. Cheltenham, UK: E. Elgar. pp. 18–21. ISBN 1-84542-157-4. OCLC 58538348.
  6. Tomoiagă, Bogdan; Chindriş, Mircea; Sumper, Andreas; Sudria-Andreu, Antoni; Villafafila-Robles, Roberto (2013). "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II". Energies. 6 (3): 1439–55. doi:10.3390/en6031439.
  7. Nielsen, Frank (1996). "Output-sensitive peeling of convex and maximal layers". Information Processing Letters. 59 (5): 255–9. CiteSeerX 10.1.1.259.1042. doi:10.1016/0020-0190(96)00116-0.
  8. Kung, H. T.; Luccio, F.; Preparata, F.P. (1975). "On finding the maxima of a set of vectors". Journal of the ACM. 22 (4): 469–76. doi:10.1145/321906.321910. S2CID 2698043.
  9. Godfrey, P.; Shipley, R.; Gryz, J. (2006). "Algorithms and Analyses for Maximal Vector Computation". VLDB Journal. 16: 5–28. CiteSeerX 10.1.1.73.6344. doi:10.1007/s00778-006-0029-7. S2CID 7374749.
  10. Kim, I. Y.; de Weck, O. L. (2005). "Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation". Structural and Multidisciplinary Optimization. 31 (2): 105–116. doi:10.1007/s00158-005-0557-6. ISSN 1615-147X. S2CID 18237050.
  11. Marler, R. Timothy; Arora, Jasbir S. (2009). "The weighted sum method for multi-objective optimization: new insights". Structural and Multidisciplinary Optimization. 41 (6): 853–862. doi:10.1007/s00158-009-0460-7. ISSN 1615-147X. S2CID 122325484.
  12. "On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization". IEEE Transactions on Systems, Man, and Cybernetics. SMC-1 (3): 296–297. 1971. doi:10.1109/TSMC.1971.4308298. ISSN 0018-9472.
  13. Mavrotas, George (2009). "Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems". Applied Mathematics and Computation. 213 (2): 455–465. doi:10.1016/j.amc.2009.03.037. ISSN 0096-3003.
  14. Legriel, Julien; Le Guernic, Colas; Cotton, Scott; Maler, Oded (2010). Esparza, Javier; Majumdar, Rupak (eds.). "Approximating the Pareto Front of Multi-criteria Optimization Problems". Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science (in English). Berlin, Heidelberg: Springer. 6015: 69–83. doi:10.1007/978-3-642-12002-2_6. ISBN 978-3-642-12002-2.
  15. Zitzler, Eckart; Knowles, Joshua; Thiele, Lothar (2008), Branke, Jürgen; Deb, Kalyanmoy; Miettinen, Kaisa; Słowiński, Roman (eds.), "Quality Assessment of Pareto Set Approximations", Multiobjective Optimization: Interactive and Evolutionary Approaches, Lecture Notes in Computer Science (in English), Berlin, Heidelberg: Springer, pp. 373–404, doi:10.1007/978-3-540-88908-3_14, ISBN 978-3-540-88908-3, retrieved 2021-10-08


बाहरी संबंध