नियमितता का अभिगृहीत
Template:Format footnotes गणित में, नियमितता का स्वयंसिद्ध (जिसे नींव का स्वयंसिद्ध भी कहा जाता है) ज़र्मेलो-फ्रेंकेल सेट सिद्धांत का एक स्वयंसिद्ध है जो बताता है कि प्रत्येक खाली सेट | गैर-खाली सेट (गणित) ए में एक तत्व होता है जो अलग होता है ए से सेट करता है। पहले क्रम के तर्क में, स्वयंसिद्ध पढ़ता है:
जोड़ी के स्वयंसिद्ध के साथ नियमितता का स्वयंसिद्ध तात्पर्य है कि कोई भी सेट स्वयं का एक तत्व नहीं है, और यह कि कोई अनंत अनुक्रम नहीं है (एn) ऐसा है कि एi+1ए का एक तत्व हैiसभी के लिए मैं निर्भर पसंद के स्वयंसिद्ध (जो पसंद के स्वयंसिद्ध का एक कमजोर रूप है) के साथ, इस परिणाम को उलटा किया जा सकता है: यदि ऐसा कोई अनंत क्रम नहीं है, तो नियमितता का स्वयंसिद्ध सत्य है। इसलिए, इस संदर्भ में नियमितता का स्वयंसिद्ध वाक्य के बराबर है कि नीचे की ओर अनंत सदस्यता श्रृंखलाएं नहीं हैं।
स्वयंसिद्ध द्वारा पेश किया गया था von Neumann (1925); द्वारा समकालीन पाठ्यपुस्तकों में पाए जाने वाले फॉर्मूलेशन के करीब इसे अपनाया गया था Zermelo (1930). नियमितता के अभाव में भी सेट थ्योरी पर आधारित गणित की शाखाओं में लगभग सभी परिणाम पकड़ में आते हैं; का अध्याय 3 देखें Kunen (1980). हालाँकि, नियमितता क्रमसूचक संख्या के कुछ गुणों को सिद्ध करना आसान बनाती है; और यह न केवल सुव्यवस्थित सेटों पर इंडक्शन करने की अनुमति देता है बल्कि उचित वर्गों पर भी होता है जो अच्छी तरह से स्थापित संबंध हैं। ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के अन्य स्वयंसिद्धों को देखते हुए, नियमितता का स्वयंसिद्ध एप्सिलॉन-प्रेरण के बराबर है। अंतर्ज्ञान के सिद्धांतों में नियमितता के स्वयंसिद्ध के स्थान पर प्रेरण के स्वयंसिद्ध का उपयोग किया जाता है (वे जो बहिष्कृत मध्य के कानून को स्वीकार नहीं करते हैं), जहां दो स्वयंसिद्ध समान नहीं हैं।
नियमितता के स्वयंसिद्ध को छोड़ने के अलावा, गैर-सुस्थापित सेट सिद्धांत | गैर-मानक सेट सिद्धांतों ने वास्तव में सेट के अस्तित्व को स्वीकार किया है जो स्वयं के तत्व हैं।
नियमितता के प्राथमिक निहितार्थ
कोई भी सेट स्वयं का एक तत्व नहीं है
A को एक सेट होने दें, और नियमितता के स्वयंसिद्ध को {A} पर लागू करें, जो युग्मन के स्वयंसिद्ध द्वारा एक सेट है। हम देखते हैं कि {ए} का एक तत्व होना चाहिए जो {ए} से अलग है। चूंकि {ए} का एकमात्र तत्व ए है, यह होना चाहिए कि ए {ए} से अलग है। इसलिए, चूंकि , हमारे पास A ∈ A नहीं हो सकता (विच्छेद समुच्चयों की परिभाषा के अनुसार)।
सेट का कोई अनंत अवरोही क्रम मौजूद नहीं है
मान लीजिए, इसके विपरीत, प्रत्येक n के लिए f(n+1) के एक तत्व f(n+1) के साथ प्राकृतिक संख्याओं पर एक फ़ंक्शन (गणित), f है। S = {f(n): n एक प्राकृतिक संख्या} परिभाषित करें, f की श्रेणी, जिसे प्रतिस्थापन के स्वयंसिद्ध स्कीमा से एक सेट के रूप में देखा जा सकता है। नियमितता के अभिगृहीत को S पर लागू करते हुए, मान लीजिए B, S का एक अवयव है जो S से असंयुक्त है। S की परिभाषा के अनुसार, B को किसी प्राकृत संख्या k के लिए f(k) होना चाहिए। हालाँकि, हमें दिया गया है कि f(k) में f(k+1) है जो कि S का भी एक तत्व है। इसलिए f(k+1) f(k) और S के इंटरसेक्शन (सेट सिद्धांत) में है। यह विरोधाभासी है तथ्य यह है कि वे असम्बद्ध समुच्चय हैं। चूँकि हमारा अनुमान एक विरोधाभास का कारण बना, ऐसा कोई कार्य नहीं होना चाहिए, च।
स्वयं को समाहित करने वाले समुच्चय का अनस्तित्व एक विशेष मामले के रूप में देखा जा सकता है जहां अनुक्रम अनंत और स्थिर है।
ध्यान दें कि यह तर्क केवल उन कार्यों पर लागू होता है जिन्हें अपरिभाषित वर्गों के विपरीत सेट के रूप में प्रदर्शित किया जा सकता है। आनुवंशिक रूप से परिमित सेट, वीω, नियमितता के स्वयंसिद्ध (और अनंत के स्वयंसिद्ध को छोड़कर ZFC के अन्य सभी स्वयंसिद्धों) को संतुष्ट करें। इसलिए यदि कोई V का गैर-तुच्छ ultraproduct बनाता हैω, तो यह नियमितता के स्वयंसिद्ध को भी संतुष्ट करेगा। परिणामी मॉडल (तर्क) गैर-मानक प्राकृतिक संख्या कहलाने वाले तत्व शामिल होंगे, जो उस मॉडल में प्राकृतिक संख्या की परिभाषा को पूरा करते हैं लेकिन वास्तव में प्राकृतिक संख्या नहीं हैं[dubious ]. वे नकली प्राकृतिक संख्याएँ हैं जो किसी भी वास्तविक प्राकृतिक संख्या से बड़ी हैं। इस मॉडल में तत्वों के अनंत अवरोही क्रम होंगे।[clarification needed] उदाहरण के लिए, मान लीजिए n एक गैर-मानक प्राकृतिक संख्या है, तो और , और इसी तरह। किसी वास्तविक प्राकृतिक संख्या k के लिए, . यह तत्वों का कभी न खत्म होने वाला अवरोही क्रम है। लेकिन यह अनुक्रम मॉडल में निश्चित नहीं है और इस प्रकार सेट नहीं है। तो नियमितता के लिए कोई विरोधाभास साबित नहीं किया जा सकता है।
आदेशित जोड़ी की सरल सेट-सैद्धांतिक परिभाषा
नियमितता का स्वयंसिद्ध क्रमित युग्म (a,b) को {a,{a,b}} के रूप में परिभाषित करने में सक्षम बनाता है; विशिष्टताओं के लिए आदेशित जोड़ी देखें। यह परिभाषा कैनोनिकल कुराटोव्स्की परिभाषा (a,b) = से ब्रेसिज़ की एक जोड़ी को हटाती है{{a},{a,b}}.
=== हर सेट का एक क्रमिक रैंक === होता है यह वास्तव में वॉन न्यूमैन के स्वयंसिद्धकरण में स्वयंसिद्ध का मूल रूप था।
मान लीजिए x कोई समुच्चय है। मान लीजिए कि {x} का सकर्मक बंद (सेट) है। मान लीजिए कि आप टी का उपसमुच्चय हैं जिसमें बिना रैंक वाले समुच्चय हैं। यदि u खाली है, तो x को स्थान दिया गया है और हमारा काम हो गया। अन्यथा, u का तत्व w प्राप्त करने के लिए नियमितता के स्वयंसिद्ध को u पर लागू करें जो u से अलग है। चूंकि w यू में है, w अनरैंक है। सकर्मक संवरण की परिभाषा के अनुसार w, t का एक उपसमुच्चय है। चूँकि w, u से असंयुक्त है, w का प्रत्येक अवयव श्रेणीबद्ध है। डब्ल्यू के तत्वों के रैंकों को जोड़ने के लिए प्रतिस्थापन और संघ के स्वयंसिद्धों को लागू करने के लिए, हम डब्ल्यू के लिए एक क्रमसूचक रैंक प्राप्त करते हैं . यह इस निष्कर्ष का खंडन करता है कि w रैंक नहीं है। तो यह धारणा कि u खाली नहीं था गलत होना चाहिए और x का रैंक होना चाहिए।
=== प्रत्येक दो सेट के लिए, केवल एक दूसरे === का एक तत्व हो सकता है माना X और Y समुच्चय हैं। फिर सेट {एक्स, वाई} (जो युग्मन के स्वयंसिद्ध द्वारा मौजूद है) के लिए नियमितता के स्वयंसिद्ध को लागू करें। हम देखते हैं कि {X,Y} का एक तत्व होना चाहिए जो इससे अलग भी है। यह या तो एक्स या वाई होना चाहिए। तब डिजॉइंट की परिभाषा के अनुसार, हमारे पास या तो वाई एक्स का तत्व नहीं है या इसके विपरीत होना चाहिए।
== निर्भर पसंद का स्वयंसिद्ध और सेट का कोई अनंत अवरोही क्रम नहीं होने का मतलब नियमितता == है बता दें कि गैर-खाली सेट एस नियमितता के स्वयंसिद्ध के लिए एक प्रति-उदाहरण है; अर्थात्, S के प्रत्येक तत्व का S के साथ एक गैर-रिक्त चौराहा है। हम S पर एक द्विआधारी संबंध R को परिभाषित करते हैं , जो अनुमान से संपूर्ण है। इस प्रकार, निर्भर पसंद के स्वयंसिद्ध द्वारा, कुछ अनुक्रम होता है (एn) एस संतोषजनक ए मेंnरविn+1'एन' में सभी एन के लिए। चूँकि यह एक अनंत अवरोही श्रृंखला है, हम एक विरोधाभास पर पहुँचते हैं और इसलिए, ऐसा कोई S मौजूद नहीं है।
नियमितता और शेष ZF(C) स्वयंसिद्ध
द्वारा नियमितता को बाकी ZF के साथ अपेक्षाकृत सुसंगत दिखाया गया था Skolem (1923) और von Neumann (1929), जिसका अर्थ है कि यदि ZF नियमितता के बिना संगत है, तो ZF (नियमितता के साथ) भी संगत है। आधुनिक संकेतन में उनके प्रमाण के लिए देखें Vaught (2001, §10.1) उदाहरण के लिए।
नियमितता के स्वयंसिद्ध को ZF(C) के अन्य स्वयंसिद्धों से स्वतंत्रता (गणितीय तर्क) के रूप में भी दिखाया गया था, यह मानते हुए कि वे सुसंगत हैं। परिणाम 1941 में पॉल बर्नेज़ द्वारा घोषित किया गया था, हालांकि उन्होंने 1954 तक एक सबूत प्रकाशित नहीं किया था। सबूत में शामिल है (और अध्ययन के लिए) रिगर-बर्नेज़ क्रमचय मॉडल (या विधि), जो स्वतंत्रता के अन्य प्रमाणों के लिए उपयोग किए गए थे गैर-अच्छी तरह से स्थापित सिस्टम (Rathjen 2004, p. 193 और Forster 2003, pp. 210–212).
नियमितता और रसेल का विरोधाभास
रसेल के विरोधाभास के कारण भोली सेट सिद्धांत (अप्रतिबंधित समझ का स्वयंसिद्ध स्कीमा और विस्तार का स्वयंसिद्ध) असंगत है। समुच्चयों की शुरुआती औपचारिकताओं में, गणितज्ञों और तर्कशास्त्रियों ने समझने की स्वयंसिद्ध स्कीमा को अलग करने की बहुत कमजोर स्वयंसिद्ध स्कीमा के साथ बदलकर उस विरोधाभास से बचा लिया है। हालाँकि, यह कदम अकेले सेट के सिद्धांतों की ओर ले जाता है जिन्हें बहुत कमजोर माना जाता है।[clarification needed][citation needed] तो समझ की कुछ शक्ति को ZF सेट सिद्धांत (जोड़ी, संघ, पॉवरसेट, प्रतिस्थापन और अनंत) के अन्य अस्तित्व स्वयंसिद्धों के माध्यम से वापस जोड़ा गया था, जिसे समझ के विशेष मामलों के रूप में माना जा सकता है।[citation needed][clarification needed] अब तक, इन स्वयंसिद्धों से कोई विरोधाभास नहीं लगता है। इसके बाद, कुछ अवांछनीय गुणों वाले मॉडलों को बाहर करने के लिए पसंद के स्वयंसिद्ध और नियमितता के स्वयंसिद्ध जोड़े गए। इन दो स्वयंसिद्धों को अपेक्षाकृत सुसंगत माना जाता है।
अलगाव की स्वयंसिद्ध योजना की उपस्थिति में, रसेल का विरोधाभास इस बात का प्रमाण बन जाता है कि कोई सार्वभौमिक सेट नहीं है। युग्मन के स्वयंसिद्ध के साथ नियमितता का स्वयंसिद्ध भी इस तरह के एक सार्वभौमिक सेट को प्रतिबंधित करता है। हालांकि, रसेल का विरोधाभास इस बात का प्रमाण देता है कि बिना किसी अतिरिक्त स्वयंसिद्ध के अकेले अलगाव के स्वयंसिद्ध स्कीमा का उपयोग करके सभी सेटों का कोई सेट नहीं है। विशेष रूप से, जेडएफ नियमितता के स्वयंसिद्ध के बिना पहले से ही इस तरह के एक सार्वभौमिक सेट को प्रतिबंधित करता है।
यदि एक सिद्धांत को एक स्वयंसिद्ध या स्वयंसिद्ध जोड़कर विस्तारित किया जाता है, तो मूल सिद्धांत के कोई भी (संभवतः अवांछनीय) परिणाम विस्तारित सिद्धांत के परिणाम बने रहते हैं। विशेष रूप से, यदि बिना नियमितता के ZF को ZF प्राप्त करने के लिए नियमितता जोड़कर बढ़ाया जाता है, तो कोई भी विरोधाभास (जैसे कि रसेल का विरोधाभास) जो मूल सिद्धांत से अनुसरण करता है, अभी भी विस्तारित सिद्धांत में अनुसरण करेगा।
क्विन परमाणुओं का अस्तित्व (सेट जो सूत्र समीकरण x = {x} को संतुष्ट करता है, यानी खुद को उनके एकमात्र तत्व के रूप में रखता है) ZFC से नियमितता के स्वयंसिद्ध को हटाकर प्राप्त सिद्धांत के अनुरूप है। विभिन्न गैर-सुस्थापित सेट सिद्धांत | गैर-अच्छी तरह से स्थापित सिद्धांत सुरक्षित परिपत्र सेट की अनुमति देते हैं, जैसे कि क्विन परमाणु, रसेल के विरोधाभास के माध्यम से असंगत हुए बिना।[1]
नियमितता, संचयी पदानुक्रम, और प्रकार
ZF में यह सिद्ध किया जा सकता है कि class , जिसे वॉन न्यूमैन ब्रह्मांड कहा जाता है, सभी सेटों के वर्ग के बराबर है। यह कथन नियमितता के स्वयंसिद्ध के समतुल्य है (यदि हम ZF में इस स्वयंसिद्ध को छोड़े गए हैं)। किसी भी मॉडल से जो नियमितता के स्वयंसिद्ध को संतुष्ट नहीं करता है, एक मॉडल जो इसे संतुष्ट करता है केवल सेट लेकर बनाया जा सकता है .
Herbert Enderton (1977, p. 206) ने लिखा है कि रैंक का विचार रसेल की प्रकार की अवधारणा का वंशज है। प्रकार के सिद्धांत के साथ ZF की तुलना करते हुए, अलसादेयर उर्कहार्ट ने लिखा है कि ज़र्मेलो की प्रणाली में स्पष्ट रूप से टाइप किए गए चर शामिल नहीं होने का सांकेतिक लाभ है, हालांकि वास्तव में इसे अंतर्निहित प्रकार की संरचना के रूप में देखा जा सकता है, कम से कम अगर नियमितता का स्वयंसिद्ध शामिल है . इस अंतर्निहित टाइपिंग का विवरण # में लिखा गया हैCITEREFZermelo1930|[ज़र्मेलो 1930], और फिर से जॉर्ज बूलोस के एक प्रसिद्ध लेख में #CITEREFBoolos1971|[बूलोस 1971]।[2]
Dana Scott (1974) आगे जाकर दावा किया कि:
The truth is that there is only one satisfactory way of avoiding the paradoxes: namely, the use of some form of the theory of types. That was at the basis of both Russell's and Zermelo's intuitions. Indeed the best way to regard Zermelo's theory is as a simplification and extension of Russell's. (We mean Russell's simple theory of types, of course.) The simplification was to make the types cumulative. Thus mixing of types is easier and annoying repetitions are avoided. Once the later types are allowed to accumulate the earlier ones, we can then easily imagine extending the types into the transfinite—just how far we want to go must necessarily be left open. Now Russell made his types explicit in his notation and Zermelo left them implicit. [emphasis in original]
उसी पेपर में, स्कॉट दिखाता है कि संचयी पदानुक्रम के अंतर्निहित गुणों के आधार पर एक स्वैच्छिक प्रणाली नियमितता सहित जेडएफ के बराबर हो जाती है।[3]
इतिहास
अच्छी तरह से स्थापित होने की अवधारणा और एक सेट के वॉन न्यूमैन ब्रह्मांड दोनों को दिमित्री मिरीमनॉफ (#) द्वारा पेश किया गया था।CITEREFMirimanoff1917) सी.एफ. Lévy (2002, p. 68) और Hallett (1996, §4.4, esp. p. 186, 188). मिरिमनॉफ़ ने एक समुच्चय x नियमित (फ्रेंच: ordinaire ) कहा है यदि प्रत्येक अवरोही श्रृंखला x ∋ x1 ∋ एक्स2 ∋ ... परिमित है। मिरिमानॉफ ने हालांकि नियमितता (और अच्छी तरह से स्थापित) की अपनी धारणा को सभी सेटों द्वारा देखे जाने वाले स्वयंसिद्ध के रूप में नहीं माना;[4] बाद के पत्रों में मिरिमनॉफ़ ने यह भी पता लगाया कि अब क्या कहा जाता है गैर-अच्छी तरह से स्थापित सिद्धांत | गैर-अच्छी तरह से स्थापित सेट (मिरिमानॉफ की शब्दावली में असाधारण)।[5]
Skolem (1923) और von Neumann (1925) इंगित किया गया है कि अच्छी तरह से स्थापित सेट अनावश्यक हैं (पृष्ठ 404 में #CITEREFvan_Heijenoort1967|van Heijenoort का अनुवाद) और उसी प्रकाशन में वॉन न्यूमैन एक स्वयंसिद्ध (अनुवाद में पृष्ठ 412) देता है जिसमें कुछ, लेकिन सभी नहीं, गैर-स्थापित सेट शामिल नहीं हैं।[6] बाद के प्रकाशन में, von Neumann (1928) निम्नलिखित स्वयंसिद्ध दिया (ए। रिगर द्वारा आधुनिक संकेतन में प्रस्तुत):
- .
मूत्रालय की उपस्थिति में नियमितता
यूरेलेमेंट ऐसी वस्तुएं हैं जो सेट नहीं हैं, लेकिन जो सेट के तत्व हो सकते हैं। ZF सेट थ्योरी में, कोई यूरेलेमेंट्स नहीं हैं, लेकिन कुछ अन्य सेट थ्योरी जैसे यूरेलमेंट#यूरेलेमेंट्स इन सेट थ्योरी में हैं। इन सिद्धांतों में, नियमितता के स्वयंसिद्ध को संशोधित किया जाना चाहिए। कथनएक बयान के साथ प्रतिस्थापित करने की जरूरत है कि खाली नहीं है और यूरेलमेंट नहीं है। एक उपयुक्त प्रतिस्थापन है , जो बताता है कि x आबाद सेट है।
यह भी देखें
- गैर-स्थापित सेट सिद्धांत
- स्कॉट की चाल
- एप्सिलॉन-इंडक्शन
संदर्भ
- ↑ Rieger 2011, pp. 175, 178.
- ↑ Urquhart 2003, p. 305.
- ↑ Lévy 2002, p. 73.
- ↑ Halbeisen 2012, pp. 62–63.
- ↑ Sangiorgi 2011, pp. 17–19, 26.
- ↑ Rieger 2011, p. 179.
स्रोत
- Bernays, Paul Isaac (1941), "A system of axiomatic set theory. Part II", The Journal of Symbolic Logic, 6 (1): 1–17, doi:10.2307/2267281, JSTOR 2267281, S2CID 250344277
- Bernays, Paul Isaac (1954), "A system of axiomatic set theory. Part VII" (PDF), The Journal of Symbolic Logic, 19 (2): 81–96, doi:10.2307/2268864, JSTOR 2268864
- Boolos, George (1971), "The iterative conception of set", Journal of Philosophy, 68 (8): 215–231, doi:10.2307/2025204, JSTOR 2025204 में पुनर्मुद्रित Boolos, George (1998), Logic, Logic and Logic, Harvard University Press, pp. 13–29
- Enderton, Herbert B. (1977), Elements of Set Theory, Academic Press
- Forster, T. (2003), Logic, induction and sets, Cambridge University Press
- Halbeisen, Lorenz J. (2012), Combinatorial Set Theory: With a Gentle Introduction to Forcing, Springer
- Hallett, Michael (1996) [first published 1984], Cantorian set theory and limitation of size, Oxford University Press, ISBN 978-0-19-853283-5
- Jech, Thomas (2003), Set Theory: The Third Millennium Edition, Revised and Expanded, Springer, ISBN 978-3-540-44085-7
- Kunen, Kenneth (1980), Set Theory: An Introduction to Independence Proofs, Elsevier, ISBN 978-0-444-86839-8
- Lévy, Azriel (2002) [first published in 1979], Basic set theory, Mineola, New York: Dover Publications, ISBN 978-0-486-42079-0
- Mirimanoff, D. (1917), "Les antinomies de Russell et de Burali-Forti et le probleme fondamental de la theorie des ensembles", L'Enseignement Mathématique, 19: 37–52
- Rathjen, M. (2004), "Predicativity, Circularity, and Anti-Foundation" (PDF), in Link, Godehard (ed.), One Hundred Years of Russell ́s Paradox: Mathematics, Logic, Philosophy, Walter de Gruyter, ISBN 978-3-11-019968-0, archived (PDF) from the original on 2022-10-09
- Rieger, Adam (2011), "Paradox, ZF, and the Axiom of Foundation" (PDF), in DeVidi, David; Hallett, Michael; Clark, Peter (eds.), Logic, Mathematics, Philosophy, Vintage Enthusiasms. Essays in Honour of John L. Bell., The Western Ontario Series in Philosophy of Science, vol. 75, pp. 171–187, CiteSeerX 10.1.1.100.9052, doi:10.1007/978-94-007-0214-1_9, ISBN 978-94-007-0213-4
- Riegger, L. (1957), "A contribution to Gödel's axiomatic set theory" (PDF), Czechoslovak Mathematical Journal, 7 (3): 323–357, doi:10.21136/CMJ.1957.100254
- Sangiorgi, Davide (2011), "Origins of bisimulation and coinduction", in Sangiorgi, Davide; Rutten, Jan (eds.), Advanced Topics in Bisimulation and Coinduction, Cambridge University Press
- Scott, Dana Stewart (1974), "Axiomatizing set theory", Axiomatic set theory. Proceedings of Symposia in Pure Mathematics Volume 13, Part II, pp. 207–214
- Skolem, Thoralf (1923), Axiomatized set theory स्टीफन बाउर-मेंगलबर्ग द्वारा अंग्रेजी अनुवाद में फ्रॉम फ्रेज टू गोडेल, वैन हाइजेनोर्ट, 1967 में पुनर्मुद्रित, पीपी। 291–301।
- Urquhart, Alasdair (2003), "The Theory of Types", in Griffin, Nicholas (ed.), The Cambridge Companion to Bertrand Russell, Cambridge University Press
- Vaught, Robert L. (2001), Set Theory: An Introduction (2nd ed.), Springer, ISBN 978-0-8176-4256-3
- von Neumann, John (1925), "Eine Axiomatisierung der Mengenlehre", Journal für die Reine und Angewandte Mathematik, 154: 219–240; में अनुवाद van Heijenoort, Jean (1967), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, pp. 393–413
- von Neumann, John (1928), "Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre", Mathematische Annalen, 99: 373–391, doi:10.1007/BF01459102, S2CID 120784562
- von Neumann, John (1929), "Uber eine Widerspruchfreiheitsfrage in der axiomatischen Mengenlehre", Journal für die Reine und Angewandte Mathematik, 1929 (160): 227–241, doi:10.1515/crll.1929.160.227, S2CID 199545822
- Zermelo, Ernst (1930), "Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über die Grundlagen der Mengenlehre." (PDF), Fundamenta Mathematicae, 16: 29–47, doi:10.4064/fm-16-1-29-47, archived (PDF) from the original on 2022-10-09; में अनुवाद Ewald, W.B., ed. (1996), From Kant to Hilbert: A Source Book in the Foundations of Mathematics Vol. 2, Clarendon Press, pp. 1219–33
बाहरी संबंध
- Axiom of foundation at PlanetMath.
- Inhabited set and the axiom of foundation on nLab