रोटर (विद्युत)
रोटर विद्युत मोटर, विद्युत जनरेटर, या आवर्तित्र में एक विद्युत चुम्बकीय प्रणाली का एक गतिमान घटक है। इसका परिक्रमण घुमावदार और चुंबकीय क्षेत्र के बीच परस्पर क्रिया के कारण होता है जो रोटर की धुरी के चारों ओर एक टॉर्क पैदा करता है।[1]
प्रारंभिक विकास
विद्युत चुम्बकीय रोटेशन का एक प्रारंभिक उदाहरण 1826-27 में एनीओस जेडलिक द्वारा विद्युत चुम्बकों और एक क्रमविनिमेयक के साथ निर्मित पहली रोटरी मशीन थी।[2] बिजली क्षेत्र में अन्य अग्रगामी में हिप्पोलीटे पिक्सी समिलित हैं, जिन्होंने 1832 में एक AC जनरेटर बनाया था, और विलियम रिची ने 1832 में भी चार रोटर कॉइल्स, एक क्रमविनिमेयक और ब्रश के साथ एक विद्युत चुम्बकीय जनरेटर का निर्माण किया था। विकास में मोरिट्ज़ हरमन जैकोबी की मोटर जैसे अधिक उपयोगी अनुप्रयोग समिलित थे, जो 1834 में एक फुट प्रति सेकंड की गति से 10 से 12 पाउंड (द्रव्यमान) उठा सकती थी, लगभग 15 वाट यांत्रिक शक्ति। 1835 में, फ्रांसिस वाटकिंस ने अपने द्वारा बनाए गए एक बिजली के "खिलौने" का वर्णन किया; जिन्हें समान्यतः मोटर और विद्युतीय जनरेटर की विनिमेयता को समझने वाले पहले लोगों में से एक माना जाता है।
रोटर्स का प्रकार और निर्माण
इंडक्शन (अतुल्यकाली) मोटर्स, जनरेटर और क्रमविनिमेयक (समकालिक) में एक विद्युतचुम्बकीय पद्धति होती है, जिसमें स्टेटर और रोटर होता है। इंडक्शन मोटर में रोटर के लिए दो बनावट हैं: पिंजरी और क्षत मोटर। जनरेटर और क्रमविनिमेयक में, रोटर की बनावट मुख्य ध्रुवीय या बेलनाकार होती हैं।
गिलहरी-पिंजरे रोटर
पिंजरी रोटर में सबसे महत्वपूर्ण भाग में इस्पात होता है जिसमें तांबे या अल्युमीनियम की समान रूप से फैली हुई छड़ें परिधि के चारों ओर अक्षीय रूप से रखी जाती हैं, जो अंत के छल्लों द्वारा छोरों पर स्थायी रूप से छोटी होती हैं।[3] यह सरल और मजबूत निर्माण इसे अधिकांश अनुप्रयोगों के लिए पसंदीदा बनाता है। असेंबली में एक मोड़ है: चुंबकीय गूँज और स्थान गुणावृत्ति को कम करने और अभिबंधन की प्रवृत्ति को कम करने के लिए सलाखों को तिरछा किया जाता है। स्टेटर में स्थित, रोटर और स्टेटर के दांत समान संख्या में होने पर बंद हो सकते हैं और चुंबक दोनों दिशाओं में परिक्रमण का विरोध करते हुए खुद को समान रूप से अलग स्थिति में रखते हैं।[3]भार के लगाव की अनुमति देने के लिए शाफ्ट के एक छोर के साथ, प्रत्येक छोर पर बियरिंग्स रोटर को अपने आवास में आयोजित करते हैं अन्य
मोटरों में गति संवेदकों या अन्य विद्युतीय नियंत्रण के लिए गैर ड्राइविंग छोर पर एक विस्तार होता है। उत्पन्न टोक़ बल रोटर के माध्यम से लोड करने के लिए गति करता है।
क्षति रोटर
क्षति रोटर एक बेलनाकार रोटर है जो स्टील विपाटन से बना होता है जिसमें इसके 3-चरण जुड़ाव के लिए तारों को पकड़ने के लिए स्थान होते हैं जो समान रूप से 120 विद्युत डिग्री पर अलग होते हैं और 'Y' समाकृति में जुड़े होते हैं।[4] रोटर से जुड़े अंतक को बाहर लाया जाता है और रोटर के शाफ्ट पर ब्रश के साथ तीन स्लिप रिंग से जोड़ा जाता है।[5] स्लिप रिंग्स पर ब्रश गति नियंत्रण प्रदान करने के लिए रोटर को जोड़ने के लिए श्रृंखला में बाहरी तीन-चरण प्रतिरोधों को श्रृंखला में जोड़ने की अनुमति देते हैं।[6] मोटर शुरू करते समय एक बड़ा टोक़ उत्पन्न करने के लिए बाहरी प्रतिरोध रोटर सर्किट का हिस्सा बन जाते हैं। जैसे ही मोटर की गति बढ़ती है, प्रतिरोधों को शून्य तक कम किया जा सकता है।[5]
मुख्य पोल रोटर
एक मुख्य रोटर तारों के आकार के स्टील विपाटन के ढेर पर बनाए जाते है, समान्यतः 2 या 3 या 4 या 6 के साथ, यहां तक कि 18 या अधिक "त्रिज्यीय शूल" बीच से चिपके रहते हैं, जिनमें से प्रत्येक को तांबे के तार से लपेटा जाता है ताकि असतत बाहरी विद्युत चुंबक ध्रुव बनाया जा सके। प्रत्येक शूल के अंदर की ओर उन्मुख छोर रोटर के सामान्य केंद्रीय निकाय में चुंबकीय रूप से आधारित होते हैं। ध्रुवों की आपूर्ति प्रत्यक्ष धारा द्वारा की जाती है या स्थायी चुम्बकों द्वारा चुम्बकित की जाती है।[7] तीन-चरण जुड़ाव वाला आर्मेचर स्टेटर पर होता है जहां वोल्टेज प्रेरित होता है। एकदिश धारा (DC), एक बाहरी उत्तेजक से या रोटर शाफ्ट पर लगे डायोड ब्रिज से, एक चुंबकीय क्षेत्र उत्पन्न करता है और परिक्रमण क्षेत्र जुड़ाव को सक्रिय करता है और वैकल्पिक करंट आर्मेचर जुड़ाव को एक साथ सक्रिय करता है।[8][7]
गैर-मुख्य रोटर
बेलनाकार आकार का रोटर एक ठोस स्टील शाफ्ट से बना होता है, जिसमें रोटर की फील्ड को पकड़ने के लिए सिलेंडर की बाहरी लंबाई के साथ चलने वाले स्थान के साथ जो अन्य स्थान में में डाले गए परतदार ताँबा की पट्टी होते हैं जिसे कीलों द्वारा सुरक्षित किया जाता हैं।[9] एक बाहरी डायरेक्ट करंट (DC) स्रोत रिंग के साथ चलने वाले ब्रश के साथ सकेंद्रियतः स्लिप रिंग से जुड़ा होता है।[8]ब्रश घूर्णी स्लिप रिंग के साथ विद्युत संपर्क बनाते हैं। DC करंट की आपूर्ति ब्रशलेस उत्तेजना के माध्यम से मशीन शाफ्ट पर लगे एक प्रतिशोधक से की जाती है जो प्रत्यावर्ती धारा को प्रत्यक्ष धारा में परिवर्तित करता है।
ऑपरेटिंग सिद्धांत
तीन-चरण इंडक्शन मशीन में, स्टेटर को आपूर्ति की जाने वाली प्रत्यावर्ती धारा एक घूर्णन चुंबकीय प्रवाह बनाने के लिए सक्रिय करती है।[10] यह प्रवाह स्टेटर और रोटर के बीच हवा के अंतराल में एक चुंबकीय क्षेत्र उत्पन्न करता है और एक वोल्टेज को प्रेरित करता है जो रोटर पट्टी के माध्यम से करंट पैदा करता है। रोटर सर्किट छोटा है और रोटर कंडक्टरों में करंट प्रवाहित होता है।[5]घूर्णन प्रवाह और करंट की क्रिया एक बल उत्पन्न करती है जो मोटर को चालू करने के लिए एक टॉर्क उत्पन्न करती है।[10]
एक प्रत्यावर्ति रोटर एक लोहे की कोर के चारों ओर लिपटे तार से बना होता है।[11] रोटर के चुंबकीय घटक को स्टील के विपाटन से बनाया जाता है ताकि कंडक्टर स्थान को विशिष्ट आकार और आकार में आने में सहायता मिल सके। जैसे-जैसे करंट तार कुंडल के माध्यम से यात्रा करता है, भीतरी भाग के चारों ओर एक चुंबकीय क्षेत्र बनाया जाता है, जिसे क्षेत्र करंट कहा जाता है।[1]क्षेत्र की वर्तमान ताकत चुंबकीय क्षेत्र के शक्ति स्तर को नियंत्रित करती है। डायरेक्ट करंट (DC) क्षेत्र करंट को एक दिशा में चलाता है, और ब्रश और स्लिप रिंग के सेट द्वारा तार कुंडल तक पहुँचाया जाता है। प्रत्येक चुंबक की तरह, उत्पन्न चुंबकीय क्षेत्र में एक उत्तरी और एक दक्षिणी ध्रुव होता है। मोटर की सामान्य दक्षिणावर्त दिशा जो रोटर को शक्ति प्रदान कर रही है, रोटर के बनावट में स्थापित चुंबक और
और चुंबकीय क्षेत्रों का उपयोग करके हेरफेर किया जा सकता है, जिससे मोटर विपरीत या वामावर्त में चल सके।[1][11]
रोटर्स की विशेषताएँ
- पिंजरी रोटर
- यह रोटर स्टेटर घूर्णन चुंबकीय क्षेत्र या समकालिक गति से कम गति से घूमता है।
- रोटर स्लिप मोटर टोक़ के लिए रोटर धाराओं की आवश्यक इंडक्शन प्रदान करती है, जो स्लिप के अनुपात में होती है।
- रोटर की गति बढ़ने पर स्लिप कम हो जाती है।
- स्लिप बढ़ने से प्रेरित मोटर करंट बढ़ता है, जो बदले में रोटर करंट को बढ़ाता है, जिसके परिणामस्वरूप लोड की मांग बढ़ाने के लिए उच्च टॉर्क होता है।
- क्षत रोटर
- यह रोटर स्थिर गति से काम करता है और इसकी शुरुआती धारा कम होती है
- रोटर सर्किट में बाहरी प्रतिरोध जोड़ा जाता है, टॉर्क को शुरू करना बढ़ाता है
- मोटर चलाने की दक्षता में सुधार होता है क्योंकि मोटर की गति बढ़ने पर बाहरी प्रतिरोध कम हो जाता है।
- उच्च टोक़ और गति नियंत्रण
- मुख्य पोल रोटर
- यह रोटर 1500 rpm (प्रति मिनट प्रतिक्रमण) से नीचे की गति से संचालित होता है और इसके निर्धारित टॉर्क का 40% बिना उत्तेजना के होता है
- इसका बड़ा व्यास और छोटी अक्षीय लंबाई है
- इसकी वायु अंतर असमान है
- रोटर में कम यांत्रिक शक्ति होती है
- बेलनाकार रोटर
- रोटर 1500-3000 rmp के बीच गति से संचालित होता है
- इसकी यांत्रिक शक्ति मजबूत है
- वायु अंतर समान है
- इसका व्यास छोटा होता है और इसकी अक्षीय लंबाई बड़ी होती है
- है और इसके लिए मुख्य ध्रुव रोटर की तुलना में अधिक टोक़ की आवश्यकता होती है
रोटर समीकरण
रोटर बार वोल्टेज
घूर्णन चुंबकीय क्षेत्र रोटर सलाखों में एक वोल्टेज को प्रेरित करता है क्योंकि यह उनके ऊपर से गुजरता है। यह समीकरण रोटर बार में प्रेरित वोल्टेज पर लागू होता है।[10]
जहां:
- = प्रेरित वोल्टेज
- = चुंबकीय क्षेत्र
- = कंडक्टर की लंबाई
- = तुल्यकालिक गति
- = कंडक्टर की गति
रोटर में टॉर्क
दिए गए चुंबकीय क्षेत्र और करंट के माध्यम से उत्पादित बल द्वारा एक टोक़ उत्पन्न होता है : ibid
जहां:
- = बल
- = टोक़
- = रोटर के छल्ले की त्रिज्या
- = रोटर बार
इंडक्शन मोटर पर्ची
एक स्टेटर चुंबकीय क्षेत्र तुल्यकालिक गति से घूमता है, ibid
जहां:
- = आवृत्ति
- = ध्रुवों की संख्या
यदि = एक इंडक्शन मोटर के लिए रोटर गति, स्लिप, S के रूप में व्यक्त किया गया है:
स्लिप और तुल्यकालिक गति के संदर्भ में रोटर की यांत्रिक गति:
स्लिप की सापेक्ष गति:
प्रेरित वोल्टेज और धाराओं की आवृत्ति
यह भी देखें
- आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) - कोई भी रोटर जो किसी प्रकार की प्रत्यावर्ती धारा को वहन करता है
- बैलेंसिंग मशीन
- कम्यूटेटर (बिजली)
- विद्युत मोटर
- फील्ड कॉइल
- रोटरडायनामिक्स
- स्टेटर
संदर्भ
- ↑ 1.0 1.1 1.2 Staff. "Understanding Alternators. What Is an Alternator and How Does It Work." N.p., n.d. Web. 24 November 2014 "Understanding Alternators. What is an Alternator and How Does It Work". Archived from the original on 11 December 2014. Retrieved 11 December 2014..
- ↑ Ing Doppelbauer Martin Dr. The Invention of the Electric Motor 1800-1854. 29th Web. November, 2014.: Web. 28th November, 2014.http://www.eti.kit.edu/english/1376.php
- ↑ 3.0 3.1 Parekh, Rakesh. 2003. AC Induction Fundamentals 30 November 2014 Web. 29 November 2014.http://ww1.microchip.com/downloads/en/AppNotes/00887a.pdf
- ↑ Industrical-Electronics. Three-Phase Wound-Rotor Induction Motor. 10 November 2014. Web. 1 December 2014 "Three-Phase Wound-Rotor Induction Motor". Archived from the original on 17 February 2015. Retrieved 10 December 2014.
- ↑ 5.0 5.1 5.2 University of Taxila. Three Induction Motor. 2012. Web. 28 November 2014 http://web.uettaxila.edu.pk/CMS/SP2012/etEMbs/notes%5CThree%20Phase%20Induction%20Motors.pdf Archived 23 January 2013 at the Wayback Machine
- ↑ Fathizadeh Masoud, PhD, PE. Induction Motors. n.d. Web. 24 November 2014. "Archived copy" (PDF). Archived (PDF) from the original on 10 October 2015. Retrieved 25 November 2014.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ 7.0 7.1 Cardell, J. PRINCIPLES OF OPERATION OF SYNCHRONOUS MACHINE (n.d.). Web.http://www.science.smith.edu/~jcardell/Courses/EGR325/Readings/SynchGenWiley.pdf
- ↑ 8.0 8.1 Donohoe. SYNCHRONOUS MACHINES.n.d. Web. 30 November 2014. http://www.ece.msstate.edu/~donohoe/ece3614synchronous_machines.pdf
- ↑ O&M Consulting Services. Basic AC Electrical Generators. n.d. Web. 2 December 2014. "American Society of Power Engineers, Inc" (PDF). Archived (PDF) from the original on 3 March 2016. Retrieved 2 January 2016.
- ↑ 10.0 10.1 10.2 Shahl, Suad Ibrahim.Three-phase Induction Machine. n.d. Web. 2 December 2014 "Archived copy" (PDF). Archived (PDF) from the original on 5 November 2015. Retrieved 12 December 2014.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ 11.0 11.1 Slemon, Gordon. Encyclopædia Britannica Inc., 17 March 2014. Web. 25 Nov. 2014 "Electric motor -- Britannica Online Encyclopedia". Archived from the original on 23 October 2014. Retrieved 25 November 2014.