File:3bodyproblem.gif
3bodyproblem.gif (780 × 246 pixels, file size: 1.56 MB, MIME type: image/gif, looped, 201 frames)
Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
Description3bodyproblem.gif |
English: A system of 3 bodies interacting gravitationally is (famously) chaotic. A system of 3 bodies interacting elastically isn't. Time in this animations is increasing from top right to down left along the diagonal, to show the evolution of the two systems. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1044947721696808961 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 11.0 code
(*Staring positions in a triangle*) x10 = -1; y10 = -1; x20 = 1; y20 = -1; x30 = 1; y30 = 1; (*Initial total momentum is zero, so the center of mass does not \ drift away*) vx10 = 0.2; vy10 = 0; vx20 = -0.1; vy20 = 0; vx30 = 0; vy30 = -0.1; (*max time the system evolves (in arbitrary units)*) T = 40; (*All three bodies have the same mass*) m1 = 1; m2 = 1; m3 = 1; (*Setting up of the equations copied from \ http://demonstrations.wolfram.com/PlanarThreeBodyProblem/ There are more elegant and compact ways of doing this, but I wasn't \ interested in optimizing the code.*) nds = NDSolve[ {x1'[t] == vx1[t], y1'[t] == vy1[t], x2'[t] == vx2[t], y2'[t] == vy2[t], x3'[t] == vx3[t], y3'[t] == vy3[t], m1 vx1'[t] == -(( m1 m2 (x1[t] - x2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^(3/2)) - ( m1 m3 (x1[t] - x3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2), m1 vy1'[t] == -(( m1 m2 (y1[t] - y2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^(3/2)) - ( m1 m3 (y1[t] - y3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2), m2 vx2'[t] == ( m1 m2 (x1[t] - x2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^( 3/2) - (m2 m3 (x2[t] - x3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^(3/2), m2 vy2'[t] == ( m1 m2 (y1[t] - y2[t]))/((x1[t] - x2[t])^2 + (y1[t] - y2[t])^2)^( 3/2) - ( m2 m3 (y2[t] - y3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^( 3/2), m3 vx3'[t] == ( m1 m3 (x1[t] - x3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2) + (m2 m3 (x2[t] - x3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^(3/2), m3 vy3'[t] == ( m1 m3 (y1[t] - y3[t]))/((x1[t] - x3[t])^2 + (y1[t] - y3[t])^2)^( 3/2) + (m2 m3 (y2[t] - y3[t]))/((x2[t] - x3[t])^2 + (y2[t] - y3[t])^2)^(3/2), x1[0] == x10, y1[0] == y10, x2[0] == x20, y2[0] == y20, x3[0] == x30, y3[0] == y30, vx1[0] == vx10, vy1[0] == vy10, vx2[0] == vx20, vy2[0] == vy20, vx3[0] == vx30, vy3[0] == vy30}, {x1, x2, x3, y1, y2, y3, vx1, vx2, vx3, vy1, vy2, vy3}, {t, 0, T}]; funsToPlot = {{x1[t], y1[t]}, {x2[t], y2[t]}, {x3[t], y3[t]}} /. nds[[1]]; evo = Table[funsToPlot /. {t -> j}, {t, 0, T, 0.01}]; dim = Dimensions[evo][[1]]; (*For the elastic force case I used a Verlet integration, as this \ case is numerically very stable.*) np = 3; k0 = 1; (*Same initial condition as the gravitational case*) pos = {{x10, y10}, {x20, y20}, {x30, y30}}; v0 = {{vx10, vy10}, {vx20, vy20}, {vx30, vy30}}; acc = Table[ Sum[If[j == k, 0, -k0 (pos[[j]] - pos[[k]])], {k, 1, np}], {j, 1, np}]; dt = 0.005; posold = pos; pos = posold + v0 dt + acc/2 dt^2; range = 5; evoe = Reap[Do[ acc = Table[Sum[ If[j == k, 0, -k0 (pos[[j]] - pos[[k]])], {k, 1, np}], {j, 1, np}]; posoldold = posold; posold = pos; pos = 2 posold - posoldold + acc dt^2; Sow[pos]; , dim];][[2, 1]]; plots = Table[ GraphicsRow[{ Show[ ListPlot[{evo[[All, 1]][[1 ;; j]], evo[[All, 2]][[1 ;; j]], evo[[All, 3]][[1 ;; j]]}, PlotStyle -> {Purple, Orange, Cyan}, PlotRange -> {{-range, range}, {-range, range}}, Joined -> True, Axes -> False, PlotLabel -> "Gravitational 3-body problem", LabelStyle -> {Bold, Black}], Graphics[{PointSize[0.03], Purple, Point[evo[[All, 1]][[j]]], Orange, Point[evo[[All, 2]][[j]]], Cyan, Point[evo[[All, 3]][[j]]]} , PlotRange -> {{-range, range}, {-range, range}}], ImageSize -> Medium ] , Show[ ListPlot[{evoe[[All, 1]][[1 ;; j]], evoe[[All, 2]][[1 ;; j]], evoe[[All, 3]][[1 ;; j]]}, PlotStyle -> {Purple, Orange, Cyan}, PlotRange -> {{-range, range}, {-range, range}}, Joined -> True, Axes -> False, PlotLabel -> "Elastic 3-body problem", LabelStyle -> {Bold, Black}], Graphics[{PointSize[0.03], Purple, Point[evoe[[All, 1]][[j]]], Orange, Point[evoe[[All, 2]][[j]]], Cyan, Point[evoe[[All, 3]][[j]]]} , PlotRange -> {{-range, range}, {-range, range}}], ImageSize -> Medium ] }], {j, 1, dim, 20}]; ListAnimate[plots]
Licensing
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighbouring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
This file, which was originally posted to
https://twitter.com/j_bertolotti/status/1044947721696808961, was reviewed on 19 October 2018 by reviewer Ronhjones, who confirmed that it was available there under the stated license on that date.
|
Items portrayed in this file
depicts
some value
26 September 2018
image/gif
de640cb31cd852c54117eae84e22eae4a9a9f981
1,634,680 byte
246 pixel
780 pixel
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:33, 26 September 2018 | 780 × 246 (1.56 MB) | wikimediacommons>Berto | User created page with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitise it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
GIF file comment | Created with the Wolfram Language : www.wolfram.com |
---|