File:DFT approximation to Hilbert filter.png

From Vigyanwiki

DFT_approximation_to_Hilbert_filter.png(665 × 523 pixels, file size: 24 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description The green graph is a section of the infinitely long Hilbert transform filter impulse response. The blue graph is a shorter section, produced by the Scilab function hilb() for use as an FIR filter. hilb() apparently just applies a simple rect() window, but other windows are also possible. When the filtering (convolution) is performed by multiplication of DFTs in the frequency domain (circular convolution), people sometimes replace the DFT of hilb() with samples of the DTFT (discrete-time Fourier transform) of h[n] = 2/(πn), whose real and imaginary components are all just 0 or ±1, thereby avoiding actual multiplications. But in that case, the convolution is actually being done with the periodic summation of h[n], shown in red. Unlike hilb(), it never goes to zero, which means that the "edge effects" of circular convolution affect (distort) every output sample. They can't simply be eliminated by discarding a few corrupted samples. That effect is generally worse than the distortion caused by windowing the h[n] sequence, even with the crude rectangular window. (example)
Date
Source Own work
Author Bob K
Permission
(Reusing this file)
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
PNG genesis
InfoField
 
This PNG graphic was created with LibreOffice
Scripts
InfoField
Do it in two languages (for fun).

Scilab code

N = 512;        % DFT size
L = N/2;        % length of plots
odd = 1:2:L;

// Create a segment of the IIR filter and its periodic summation
  h_IIR = zeros(1,L);
  h_periodic = zeros(1,L);
  for n = odd
    h_IIR(n) = 2/(%pi*n);
    h_periodic(n) = 2/(N*tan(%pi*n/N));      % periodic summation
  end

// Equivalent method
// M = 2*L+1;         
// h_IIR = hilb(M);  //513-tap, FIR Hilbert transform filter
// h_IIR = h_IIR(L+2:M);

// Create a 65-tap, FIR Hilbert transform filter
  minimum_display_value = 0.0001;
  M = 65;         
  M2 = (M-1)/2;
// The next 2 statements are equivalent to the one commented out below them
  h_65 = hilb(M);
  h_65 = [h_65(M2+2:M) ones(1,L-M2)*minimum_display_value];   // align with h_IIR
//h_65 = [h_IIR(1:M2)  ones(1,L-M2)*minimum_display_value];   // align with h_IIR

// Create another filter (equivalent to h_periodic) by sampling the DTFT
  H_DFT = %i*[0 -ones(1,L-1) ones(1,L)];
  h_DFT = real(fft(H_DFT, 1));    // inverse FFT
  h_DFT = h_DFT(2:$);             // align with h_IIR

// Display the results
  r=5; g=3; b=2;  // based on a call to getcolor()
  plot2d(odd', [h_IIR(odd)' h_DFT(odd)' h_65(odd)'], logflag="nl", style=[g r b],..
        rect=[0,minimum_display_value,256,1], frameflag=1, axesflag=1);

  title("Hilbert filter (green) and two approximations", "fontsize", 4);
  ylabel("impulse response (for n > 0)", "fontsize", 3);
  xlabel("n (odd values only)", "fontsize", 3);

  a = gca();
//a.box = "on";         included in frameflag=1
  a.font_size=3;        //set the tics label font size
  a.x_ticks = tlist(["ticks", "locations", "labels"], [1 51 101 151 201 251],..
  ["1" "51" "101" "151" "201" "251"]);

// Set line thickness of plots
  a.children.children.thickness=3;

// This works too
//f = gcf();
//f.children.children.children.thickness=3;

// Can do it this way when the thicknesses are not all the same:
// pb = a.children.children(1);    // Note that the order (compared to "style") is LIFO
// pr = a.children.children(2);
// pg = a.children.children(3);
// pg.thickness = 3;
// pr.thickness = 3;       // equivalent to set(pr,'thickness',3);
// pb.thickness = 3;

Now do it in Octave.

Octave code

pkg load signal
  N = 512;        % DFT size
  L = N/2;        % length of plots
  odd = 1:2:L;

% Create a segment of the IIR filter and its periodic summation
  h_IIR = zeros(1,L);
  h_periodic = zeros(1,L);
  for n = odd
    h_IIR(n) = 2/(pi*n);
    h_periodic(n) = 2/(N*tan(pi*n/N));      % periodic summation
  endfor

% Create a 65-tap, FIR Hilbert transform filter
  minimum_display_value = 0.0001;
  M = 65;         
  M2 = (M-1)/2;
  h_65 = [h_IIR(1:M2)  ones(1,L-M2)*minimum_display_value];   % align with h_IIR

% Create another filter (equivalent to h_periodic) by sampling the DTFT
  H_DFT = i*[0 -ones(1,L-1) ones(1,L)];
  h_DFT = real(ifft(H_DFT));        % inverse FFT
  h_DFT = h_DFT(2:end);             % align with h_IIR

% Display the results
  figure
  semilogy(odd', h_IIR(odd)', 'color', 'green', 'linewidth', 2)
  hold on
% The next two statements are eqivalent
  semilogy(odd', h_DFT(odd)', 'color', 'red', 'linewidth', 2)
% semilogy(odd', h_periodic(odd)', 'color', 'red', 'linewidth', 2)

  semilogy(odd', h_65(odd)', 'color', 'blue', 'linewidth', 2)

  xlim([0 256])
  ylim([minimum_display_value 1])
  set(gca, 'xtick', [1:50:251]);

  title("Hilbert filter (green) and two approximations", "fontsize", 14);
  ylabel("impulse response (for n > 0)", "fontsize", 12);
  xlabel("n (odd values only)", "fontsize", 12);

LaTex


La bildo estas kopiita de wikipedia:en. La originala priskribo estas (The image is copied from wikipedia: en. The original description is):

date/time username edit summary source
23:55, 7 December 2005 en:User:Bob K (I created this image myself, using Matlab tools.) http://en.wikipedia.org/wiki/Image:DFT_approximation_to_Hilbert_filter.png

en:Image:DFT approximation to Hilbert filter.png

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

27 September 2007

image/png

95ee1586c240f8bb958d25b4147898071aea7ae4

25,042 byte

523 pixel

665 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current02:22, 29 March 2015Thumbnail for version as of 02:22, 29 March 2015665 × 523 (24 KB)wikimediacommons>Bob KThis one depicts the truncated part of the FIR filter as on the x-axis, which is slightly above zero. The actual value of the truncated part is exactly zero., of course.

Metadata