File:Ensemble classical 1DOF canonical.png

From Vigyanwiki

Original file(900 × 1,350 pixels, file size: 174 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: Ensemble canonically distributed over energy, for a classical system consisting of one particle in a potential well.
Date
Source Own work
Author Nanite

Source

 
This plot was created with Matplotlib.

Python source code. Requires matplotlib.

from pylab import *

figformat = '.png'
saveopts = {'dpi':300} #, 'transparent':True, 'frameon':True, 'bbox_inches':'tight'}
seterr(divide='ignore')

temp_canonical = 4.1
energy_microcanonical = -2.0
range_microcanonical = 1.0
micro_e0 = energy_microcanonical - 0.5*range_microcanonical
micro_e1 = energy_microcanonical + 0.5*range_microcanonical
def potential(x):
    return x**6 + 4*x**3 - 5*x**2 - 4*x
x = linspace(-2.5,2.5,2001) ; dx = x[1] - x[0]
mass = 1.0
p = linspace(-15,15,2001) ; dp = p[1] - p[0]
psextent = (x[0]-0.5*dx, x[-1]+0.5*dx, p[0]-0.5*dp, p[-1]+0.5*dp)

# compute pixel edges, used for pcolormesh.
xcorners = zeros(len(x)+1)
xcorners[:len(x)] = x-0.5*dx
xcorners[-1] = x[-1] + 0.5*dx

X,P = meshgrid(x, p)
E = potential(X) + P**2/(2*mass) #Hamiltonian

# make an energy range, for plots vs energy.
Evals = arange(-8,10,0.1)
phaseV = array(list(sum(E <= Elim) for Elim in Evals))
Evals2 = (Evals + 0.5*(Evals[1]-Evals[0]))[:-1]
phaseDOS = diff(phaseV)

# also figure out the density of states function in position-energy.
xvals = list()
phasesump = array(list(sum(E <= Elim,axis=0) for Elim in Evals))
phasedosp = diff(phasesump,axis=0)

#define color map that is transparent for low values, and dark blue for high values.
# weighted to show low probabilities well
cdic = {'red':   [(0,0,0),(1,0,0)],
        'green': [(0,0,0),(1,0,0)],
        'blue':  [(0,0.7,0.7),(1,0.7,0.7)],
        'alpha': [(0,0,0),
                  (0.1,0.4,0.4),
                  (0.2,0.6,0.6),
                  (0.4,0.8,0.8),
                  (0.6,0.9,0.9),
                  (1,1,1)]}
cm_prob = matplotlib.colors.LinearSegmentedColormap('prob',cdic)

def energyplot(phaseDOS_E, phaseDOS, phasedosp, ensemble, doslighten=1.0, ensemblelighten=1.0):
    """
    Plot the potential with density of states on sidebar.
      Evals, phaseDOS: list of energies and DOS to plot on right panel
    """
    fig = figure()
    
    # energy-position plot
    ax = axes([0.08,0.06,0.73,0.43])
    plot(x,potential(x), linewidth=2, color='r', zorder=1)
    extent = (xcorners[0], xcorners[-1], Evals[0], Evals[-1])
    img = imshow(phasedosp, cmap=cm_prob, extent=extent, interpolation='none', aspect='auto', origin='lower', zorder=0)
    clim(0,amax(phasedosp)*doslighten)
    ax.xaxis.labelpad = 2
    ax.yaxis.labelpad = -3
    xlabel("position $x$")
    ylabel("energy")
    ax.xaxis.set_ticklabels([])
    ax.yaxis.set_ticklabels([])
    ylim(-9,9)
    xlim(-2.1,1.7)
    ax.xaxis.set_ticks([-2,-1,0,1])

    # density of states sidebar
    ax = axes([0.83,0.06,0.14,0.43]) #, axisbg=(0.95,0.95,0.95))
    xlabel("states")
    ax.xaxis.set_ticks([])
    ax.yaxis.set_ticklabels([])
    ax.yaxis.set_ticks_position('right')
    ylim(-9,9)
    fill_betweenx(phaseDOS_E, phaseDOS, linewidth=0, color=(0.5,0.5,0.85))
    xlim(-0.05*max(phaseDOS),max(phaseDOS)*1.1)

    # phase space plot
    ax = axes([0.08,0.50,0.73,0.455])
    img = imshow(ensemble, cmap=cm_prob, extent=psextent, interpolation='none', aspect='auto', origin='lower', zorder=0)
    clim(0,amax(ensemble)*ensemblelighten)
    ax.xaxis.labelpad = 4
    ax.xaxis.set_label_position('top')
    ax.xaxis.set_ticklabels([])
    ax.yaxis.set_ticks([])
    ax.xaxis.set_ticks_position('both')
    ax.yaxis.labelpad = 0
    xlabel("position $x$")
    ylabel("momentum $p$")
    ylim(-7.5,7.5)
    xlim(-2.1,1.7)
    ax.xaxis.set_ticks([-2,-1,0,1])

    fig.set_size_inches(3,4.5)
    fig.patch.set_alpha(0)

allensemble = (E > -999.0)
#viewensemble = (E < 9.0)
energyplot(Evals2, phaseDOS,phasedosp,allensemble, doslighten=0.8, ensemblelighten=16.0)
savefig("class_potential"+figformat, **saveopts)

#canonical phase space image
canonical = exp(-E/temp_canonical)
print "canonical (T =",temp_canonical,") avg energy",
canonical_avgE = sum(E*canonical)/sum(canonical)
print canonical_avgE

energyplot(Evals2, phaseDOS*exp(-Evals2/temp_canonical),
    phasedosp*(exp(-Evals2/temp_canonical))[:,newaxis],
    canonical, doslighten=0.3)
sca(gcf().axes[0])
annotate("$\\langle E\\rangle$", (-0.5,canonical_avgE),
    textcoords=None,verticalalignment='top',color=(0,0.4,0))
axhline(canonical_avgE, linestyle='dotted', linewidth=1,color=(0,0.4,0))
annotate('',(1.2,7.-temp_canonical),(1.2,7.),
    arrowprops = {'arrowstyle':'<->'})
text(1.15,7.-0.5*temp_canonical,'$kT$',
    horizontalalignment='right',verticalalignment='center')
sca(gcf().axes[1])
axhline(canonical_avgE, linestyle='dotted', linewidth=1,color=(0,0.4,0))
savefig("class_canonical_potential"+figformat, **saveopts)


micro = (E < micro_e1)*(E > micro_e0)
print "microcanonical (E0 =",energy_microcanonical,", Delta =",0.5*range_microcanonical,") avg energy",
print sum(E*micro)/sum(micro)

tmp = (Evals2 < micro_e1)*(Evals2 > micro_e0)
energyplot(Evals2, phaseDOS*tmp,phasedosp*tmp[:,newaxis], micro, doslighten=0.5, ensemblelighten=3.0)
sca(gcf().axes[0])
axhspan(micro_e0, micro_e1, color=(0.7,1,0.7),zorder=-2)
sca(gcf().axes[1])
axhspan(micro_e0, micro_e1, color=(0.7,1,0.7),zorder=-2)
savefig("class_microcanonical_potential"+figformat, **saveopts)


# Position expectation values 
fig = figure()
plot(x, sum(micro,axis=0)/float(sum(micro))/dx, label='microcanonical')
plot(x, sum(canonical,axis=0)/sum(canonical)/dx, label='canonical')
xlim(-2.1,1.7)
fig.get_axes()[0].xaxis.set_ticks([-2,-1,0,1])
xlabel("position $x$")
ylabel("PDF of position $P(x)$")
legend()
fig.set_size_inches(4,4)
fig.patch.set_alpha(0)
savefig("class_position_pdf"+figformat, **saveopts)

# Momentum expectation values 
fig = figure()
plot(p, sum(micro,axis=1)/float(sum(micro))/dp, label='microcanonical')
plot(p, sum(canonical,axis=1)/sum(canonical)/dp, label='canonical')
xlim(-7.5,7.5)
xlabel("momentum $p$")
ylabel("PDF of momentum $P(p)$")
legend()
fig.set_size_inches(4,4)
fig.patch.set_alpha(0)
savefig("class_momentum_pdf"+figformat, **saveopts)

Licensing

I, the copyright holder of this work, hereby publish it under the following licence:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighbouring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

30 October 2013

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current03:21, 31 October 2013Thumbnail for version as of 03:21, 31 October 2013900 × 1,350 (174 KB)wikimediacommons>NaniteUser created page with UploadWizard

There are no pages that use this file.

Metadata