File:Optical fibres modes vs wavelength.gif
Optical_fibres_modes_vs_wavelength.gif (600 × 386 pixels, file size: 2.6 MB, MIME type: image/gif, looped, 61 frames, 31 s)
Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
DescriptionOptical fibres modes vs wavelength.gif |
English: The number of modes allowed in an optical fibre depends on the fibre itself (radius and refractive index) and the wavelength you are using.
(Showing only the energy distribution of TE modes for simplicity.) |
Date | |
Source | https://twitter.com/j_bertolotti/status/1320687090246496261 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.1 code
(*Root-finding code idea from https://mathematica.stackexchange.com/questions/16439/find-all-roots-of-an-interpolating-function-solution-to-a-differential-equation/16444#16444*)
Clear[findAllRoots]
SyntaxInformation[findAllRoots] = {"LocalVariables" -> {"Plot", {2, 2}}, "ArgumentsPattern" -> {_, _, OptionsPattern[]}};
SetAttributes[findAllRoots, HoldAll];
Options[findAllRoots] = Join[{"ShowPlot" -> False, PlotRange -> All}, FilterRules[Options[Plot], Except[PlotRange]]];
findAllRoots[fn_, {l_, lmin_, lmax_}, opts : OptionsPattern[]] := Module[{pl, p, x, localFunction, brackets}, localFunction = ReleaseHold[Hold[fn] /. HoldPattern[l] :> x];
If[lmin != lmax, pl = Plot[localFunction, {x, lmin, lmax}, Evaluate@FilterRules[Join[{opts}, Options[findAllRoots]], Options[Plot]]];
p = Cases[pl, Line[{x__}] :> x, Infinity];
If[OptionValue["ShowPlot"], Print[Show[pl, PlotLabel -> "Finding roots for this function", ImageSize -> 200, BaseStyle -> {FontSize -> 8}]]], p = {}];
brackets = Map[First, Select[(*This Split trick pretends that two points on the curve are "equal" if the function values have _opposite _ sign.Pairs of such sign-changes form the brackets for the subsequent FindRoot*) Split[p, Sign[Last[#2]] == -Sign[Last[#1]] &], Length[#1] == 2 &], {2}];
x /. Apply[FindRoot[localFunction == 0, {x, ##1}] &, brackets, {1}] /. x -> {}]
(*8*)
\[Lambda] =.;
k0[\[Lambda]_] := (2 \[Pi])/\[Lambda];
n0 = 1; n1 = 1.1; \[Mu]0 = 1; c = 1; \[Omega][\[Lambda]_] := k0[\[Lambda]] c;
r0 = 2;
\[Beta][\[Lambda]_, kz_] := Sqrt[k0[\[Lambda]]^2 n1^2 - kz^2];
\[Sigma][\[Lambda]_, kz_] := Sqrt[kz^2 - k0[\[Lambda]]^2 n0^2];
dispersionTE[\[Lambda]_, kz_] := BesselJ[1, \[Beta][\[Lambda], kz] r0]/(\[Beta][\[Lambda], kz] BesselJ[0, \[Beta][\[Lambda], kz] r0]) + BesselK[1, \[Sigma][\[Lambda], kz] r0]/(\[Sigma][\[Lambda], kz] BesselK[0, \[Sigma][\[Lambda], kz] r0]);
Er[r_, root_] := 0; H\[Phi][r_, root_] := 0;
E\[Phi][r_, root_] := Piecewise[{{-I (\[Omega][\[Lambda]] \[Mu]0 )/\[Beta][\[Lambda], kz] BesselJ[1, \[Beta][\[Lambda], kz] r], r < r0}, {I (\[Omega][\[Lambda]] \[Mu]0)/\[Sigma][\[Lambda], kz] BesselJ[0, \[Beta][\[Lambda], kz] r0]/ BesselK[0, \[Sigma][\[Lambda], kz] r0] BesselK[1, \[Sigma][\[Lambda], kz] r], r >= r0}}] /. {kz -> root};
Hr[r_, root_] := Piecewise[{{I BesselJ[1, \[Beta][\[Lambda], kz] r], r < r0}, {-I \[Beta][\[Lambda], kz]/\[Sigma][\[Lambda], kz] BesselJ[0, \[Beta][\[Lambda], kz] r0]/ BesselK[0, \[Sigma][\[Lambda], kz] r0] BesselK[1, \[Sigma][\[Lambda], kz] r], r >= r0}}] /. {kz -> root};
Hz[r_, root_] := Piecewise[{{BesselJ[0, \[Beta][\[Lambda], kz] r], r < r0}, {BesselJ[0, \[Beta][\[Lambda], kz] r0]/ BesselK[0, \[Sigma][\[Lambda], kz] r0] BesselK[0, \[Sigma][\[Lambda], kz] r], r >= r0}}] /. {kz -> root};
modes = Table[
rootsTE = findAllRoots[dispersionTE[\[Lambda], kz], {kz, 0, 25}];
rootsTE = Sort[rootsTE[[Flatten@Position[Evaluate[dispersionTE[\[Lambda], #] & /@ rootsTE], _?(Abs[#] < 1 &)]]] ];
Column[{
Style[StringForm["TE modes. \!\(\*FractionBox[\(\[Lambda]\), \(R\)]\)=``", NumberForm[N[\[Lambda]/r0], {3, 2}]], Black, Bold, FontSize -> 14],
GraphicsRow[
Table[DensityPlot[Norm[Hz[Sqrt[x^2 + y^2], rootsTE[[j]]]]^2 + Norm[Hr[Sqrt[x^2 + y^2], rootsTE[[j]]]]^2 + Norm[E\[Phi][Sqrt[x^2 + y^2], rootsTE[[j]]]]^2, {x, -1.5 r0, 1.5 r0}, {y, -1.5 r0, 1.5 r0}, PlotPoints -> 50, PlotRange -> All, ColorFunction -> "AvocadoColors", Frame -> False], {j, 1, Dimensions[rootsTE][[1]]}] ]
}, Alignment -> Center]
, {\[Lambda], 0.3, 2.1, 0.03}];
ListAnimate[Reverse[modes], 2]
Licensing
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighbouring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Items portrayed in this file
depicts
some value
26 October 2020
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:45, 28 October 2020 | 600 × 386 (2.6 MB) | wikimediacommons>Berto | Uploaded own work with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitise it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
GIF file comment | Created with the Wolfram Language : www.wolfram.com |
---|