File:Optical fibres modes vs wavelength.gif

From Vigyanwiki

Optical_fibres_modes_vs_wavelength.gif(600 × 386 pixels, file size: 2.6 MB, MIME type: image/gif, looped, 61 frames, 31 s)

Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: The number of modes allowed in an optical fibre depends on the fibre itself (radius and refractive index) and the wavelength you are using. (Showing only the energy distribution of TE modes for simplicity.)
Date
Source https://twitter.com/j_bertolotti/status/1320687090246496261
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.1 code

(*Root-finding code idea from https://mathematica.stackexchange.com/questions/16439/find-all-roots-of-an-interpolating-function-solution-to-a-differential-equation/16444#16444*)
Clear[findAllRoots]
SyntaxInformation[findAllRoots] = {"LocalVariables" -> {"Plot", {2, 2}}, "ArgumentsPattern" -> {_, _, OptionsPattern[]}};
SetAttributes[findAllRoots, HoldAll];
Options[findAllRoots] = Join[{"ShowPlot" -> False, PlotRange -> All}, FilterRules[Options[Plot], Except[PlotRange]]];
findAllRoots[fn_, {l_, lmin_, lmax_}, opts : OptionsPattern[]] := Module[{pl, p, x, localFunction, brackets}, localFunction = ReleaseHold[Hold[fn] /. HoldPattern[l] :> x];
  If[lmin != lmax, pl = Plot[localFunction, {x, lmin, lmax}, Evaluate@FilterRules[Join[{opts}, Options[findAllRoots]], Options[Plot]]];
   p = Cases[pl, Line[{x__}] :> x, Infinity];
   If[OptionValue["ShowPlot"], Print[Show[pl, PlotLabel -> "Finding roots for this function", ImageSize -> 200, BaseStyle -> {FontSize -> 8}]]], p = {}];
  brackets = Map[First, Select[(*This Split trick pretends that two points on the curve are "equal" if the function values have _opposite _ sign.Pairs of such sign-changes form the brackets for the subsequent FindRoot*) Split[p, Sign[Last[#2]] == -Sign[Last[#1]] &], Length[#1] == 2 &], {2}];
  x /. Apply[FindRoot[localFunction == 0, {x, ##1}] &, brackets, {1}] /. x -> {}]
(*8*)
\[Lambda] =.;
k0[\[Lambda]_] := (2 \[Pi])/\[Lambda];
n0 = 1; n1 = 1.1; \[Mu]0 = 1; c = 1; \[Omega][\[Lambda]_] := k0[\[Lambda]] c;
r0 = 2;
\[Beta][\[Lambda]_, kz_] := Sqrt[k0[\[Lambda]]^2 n1^2 - kz^2];
\[Sigma][\[Lambda]_, kz_] := Sqrt[kz^2 - k0[\[Lambda]]^2 n0^2];
dispersionTE[\[Lambda]_, kz_] := BesselJ[1, \[Beta][\[Lambda], kz] r0]/(\[Beta][\[Lambda], kz] BesselJ[0, \[Beta][\[Lambda], kz] r0]) + BesselK[1, \[Sigma][\[Lambda], kz] r0]/(\[Sigma][\[Lambda], kz] BesselK[0, \[Sigma][\[Lambda], kz] r0]);
Er[r_, root_] := 0; H\[Phi][r_, root_] := 0;
E\[Phi][r_, root_] := Piecewise[{{-I (\[Omega][\[Lambda]] \[Mu]0 )/\[Beta][\[Lambda], kz] BesselJ[1, \[Beta][\[Lambda], kz] r], r < r0}, {I (\[Omega][\[Lambda]] \[Mu]0)/\[Sigma][\[Lambda], kz] BesselJ[0, \[Beta][\[Lambda], kz] r0]/ BesselK[0, \[Sigma][\[Lambda], kz] r0] BesselK[1, \[Sigma][\[Lambda], kz] r], r >= r0}}] /. {kz -> root};
Hr[r_, root_] := Piecewise[{{I  BesselJ[1, \[Beta][\[Lambda], kz] r], r < r0}, {-I \[Beta][\[Lambda], kz]/\[Sigma][\[Lambda], kz] BesselJ[0, \[Beta][\[Lambda], kz] r0]/ BesselK[0, \[Sigma][\[Lambda], kz] r0] BesselK[1, \[Sigma][\[Lambda], kz] r], r >= r0}}] /. {kz -> root};
Hz[r_, root_] := Piecewise[{{BesselJ[0, \[Beta][\[Lambda], kz] r], r < r0}, {BesselJ[0, \[Beta][\[Lambda], kz] r0]/ BesselK[0, \[Sigma][\[Lambda], kz] r0] BesselK[0, \[Sigma][\[Lambda], kz] r], r >= r0}}] /. {kz -> root};

modes = Table[
   rootsTE = findAllRoots[dispersionTE[\[Lambda], kz], {kz, 0, 25}];
   rootsTE = Sort[rootsTE[[Flatten@Position[Evaluate[dispersionTE[\[Lambda], #] & /@ rootsTE], _?(Abs[#] < 1 &)]]] ];
   Column[{
     Style[StringForm["TE modes. \!\(\*FractionBox[\(\[Lambda]\), \(R\)]\)=``", NumberForm[N[\[Lambda]/r0], {3, 2}]], Black, Bold, FontSize -> 14],
     GraphicsRow[
      Table[DensityPlot[Norm[Hz[Sqrt[x^2 + y^2], rootsTE[[j]]]]^2 + Norm[Hr[Sqrt[x^2 + y^2], rootsTE[[j]]]]^2 + Norm[E\[Phi][Sqrt[x^2 + y^2], rootsTE[[j]]]]^2, {x, -1.5 r0, 1.5 r0}, {y, -1.5 r0, 1.5 r0}, PlotPoints -> 50, PlotRange -> All, ColorFunction -> "AvocadoColors", Frame -> False], {j, 1, Dimensions[rootsTE][[1]]}]  ]
     }, Alignment -> Center]
   , {\[Lambda], 0.3, 2.1, 0.03}];
ListAnimate[Reverse[modes], 2]

Licensing

I, the copyright holder of this work, hereby publish it under the following licence:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighbouring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents
Modes allowed in an optical fibre as a function of wavelength.

Items portrayed in this file

depicts

26 October 2020

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:45, 28 October 2020Thumbnail for version as of 19:45, 28 October 2020600 × 386 (2.6 MB)wikimediacommons>BertoUploaded own work with UploadWizard

Metadata