अर्न प्रॉब्लेम

From Vigyanwiki
दो जलपात्र जिनमें सफेद और लाल गेंदें हैं।

संभाव्यता और सांख्यिकी में, अर्न समस्या आदर्श मानसिक प्रयोग है जिसमें वास्तविक रुचि की कुछ वस्तुओं (जैसे परमाणु, मनुष्य, कार, आदि) को जलपात्र में रंगीन गेंदों के रूप में प्रदर्शित किया जाता है। कोई जलपात्र से एक या अधिक गेंदें निकालने का संकल्प करता है; लक्ष्य एक या दूसरे रंग या कुछ अन्य गुणों को चित्रित करने की संभावना निर्धारित करता है। नीचे कई महत्वपूर्ण विविधताओं का वर्णन किया गया है।

अर्न प्रारूप संभावनाओं का समूह है जो अर्न समस्या के अंदर घटनाओं का वर्णन करता है, या यह संभाव्यता वितरण है, या अर्न समस्याओं से जुड़े यादृच्छिक चर के ऐसे वितरणों का समूह है।[1]

इतिहास

आर्स कॉन्जेक्टैंडी (1713) में, जैकब बर्नौली ने जलपात्र से निकाले गए कंकड़ों को देखते हुए, जलपात्र के अंदर विभिन्न रंग के कंकड़ के अनुपात को निर्धारित करने की समस्या पर विचार किया है। इस समस्या को व्युत्क्रम संभाव्यता समस्या के रूप में जाना जाता था, और यह अठारहवीं शताब्दी में शोध का विषय था, जिसने अब्राहम डी मोइवरे और थॉमस बेयस का ध्यान आकर्षित किया है।

बर्नौली ने लैटिन शब्द उर्ना का उपयोग किया, जिसका मुख्य अर्थ मिट्टी का बर्तन है, किन्तु यह शब्द मिट्टी का पात्र या लॉट एकत्र करने के लिए किसी भी प्रकार के बर्तन के लिए प्राचीन रोम में भी उपयोग किया जाता है; मतपेटी के लिए वर्तमान इतालवी शब्द अभी भी उरना है। बर्नौली की प्रेरणा संभवतः लॉटरी, चुनाव या संयोग के खेल रहे होंगे जिसमें कंटेनर से गेंदें निकालना सम्मिलित था, और यह प्रमाणित किया गया है कि मध्ययुगीन और पुनर्जागरण वेनिस में चुनावों में, जिसमें वेनिस के डोगे भी सम्मिलित थे, प्रायः, जिसमें जलपात्र से निकाली गई विभिन्न रंगों की गेंदों का उपयोग किया जाता था।[2]

मूल अर्न प्रारूप

संभाव्यता सिद्धांत में इस मूल अर्न प्रारूप में, x सफेद और y काली गेंदें होती हैं, जो एक साथ उचित प्रकार से मिश्रित होती हैं। जलपात्र से यादृच्छिक रूप से एक गेंद निकाली जाती है और उसका रंग देखा जाता है; फिर इसे पुनः जलपात्र में रख दिया जाता है (या नहीं), और चयन प्रक्रिया पुनः की जाती है।[3]

इस प्रारूप में जिन संभावित प्रश्नों का उत्तर दिया जा सकता है वे इस प्रकार हैं:

  • क्या मैं n अवलोकनों से सफेद और काली गेंदों के अनुपात का अनुमान लगा सकता हूँ? किस स्तर के आत्मविश्वास के साथ?
  • x और y को जानते हुए, विशिष्ट अनुक्रम (उदाहरण के लिए सफेद के पश्चात काला) निकालने की संभावना क्या है?
  • यदि मैं केवल n गेंदें देखता हूँ, तो मैं कितना आश्वस्त हो सकता हूँ कि कोई काली गेंदें नहीं हैं? (प्रथम और दूसरे प्रश्न दोनों में भिन्नता)

जलपात्र समस्याओं के उदाहरण

  • बीटा-द्विपद वितरण: जैसा ऊपर बताया गया है, इसके अतिरिक्त कि प्रत्येक बार जब गेंद देखी जाती है, तो उसी रंग की एक अतिरिक्त गेंद जलपात्र में जोड़ दी जाती है। इसलिए, जलपात्र में कुल गेंदों की संख्या बढ़ जाती है। पोल्या जलपात्र प्रारूप देखें।
  • द्विपद वितरण: सफल ड्रॉ (परीक्षण) की संख्या का वितरण, अर्थात सफेद गेंदों का निष्कर्षण, काले और सफेद गेंदों के साथ जलपात्र में प्रतिस्थापन के साथ n ड्रॉ दिए गए है।[3]
  • हॉप कलश: अतिरिक्त गेंद के साथ पोल्या जलपात्र जिसे म्यूटेटर कहा जाता है। जब म्यूटेटर निकाला जाता है तो इसे पूर्ण रूप से नए रंग की अतिरिक्त गेंद के साथ परिवर्तित कर दिया जाता है।
  • हाइपरजियोमेट्रिक वितरण: एक बार निकाले जाने के पश्चात गेंदें जलपात्र में पुनः नहीं आतीं है। इसलिए, जलपात्र में कुल कंचों की संख्या कम हो जाती है। प्रतिस्थापन के साथ ड्राइंग के विरोध में इसे प्रतिस्थापन के अतिरिक्त ड्राइंग कहा जाता है।
  • बहुभिन्नरूपी हाइपरजियोमेट्रिक वितरण: गेंदें निकाले जाने के पश्चात जलपात्र में वापस नहीं आतीं है, अन्यथा दो से अधिक रंगों की गेंदों के साथ वापस आती हैं।[3]
  • ज्यामितीय वितरण: प्रथम सफल (उचित रंग वाले) ड्रा से प्रथम ड्रा की संख्या है।[3]
  • मिश्रित प्रतिस्थापन/गैर-प्रतिस्थापन: जलपात्र में काली और सफेद गेंदें हैं। किन्तु काली गेंदों को ड्रॉ (प्रतिस्थापन नहीं) के पश्चात अलग रख दिया जाता है, किन्तु सफेद गेंदों को ड्रॉ (प्रतिस्थापन) के पश्चात जलपात्र में पुनः कर दिया जाता है। m निकालने के पश्चात निकाली गई काली गेंदों की संख्या का वितरण क्या है?
  • बहुपद वितरण: दो से अधिक रंगों की गेंदें होती हैं। प्रत्येक बार जब गेंद निकाली जाती है, तो उसे दूसरी गेंद निकालने से पूर्व वापस कर दिया जाता है।[3] इसे 'बॉल्स इनटू बिन्स' के नाम से भी जाना जाता है।
  • नकारात्मक द्विपद वितरण: विफलताओं की निश्चित संख्या (त्रुटिपूर्ण रंग वाले ड्रॉ) होने से पूर्व ड्रॉ की संख्या है।
  • अधिभोग समस्या: कूपन संग्राहक की समस्या और जन्मदिन की समस्या से संबंधित k गेंदों को n जलपात्रो में यादृच्छिक रूप से निर्दिष्ट करने के पश्चात अधिभोगित जलपात्रो की संख्या का वितरण है।
  • पोल्या कलश: प्रत्येक बार जब विशेष रंग की गेंद निकाली जाती है, तो उसे उसी रंग की अतिरिक्त गेंद के साथ परिवर्तित कर दिया जाता है।
  • सांख्यिकीय भौतिकी: ऊर्जा और वेग वितरण की व्युत्पत्ति है।
  • एल्सबर्ग विरोधाभास

यह भी देखें

संदर्भ

  1. Dodge, Yadolah (2003) Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-850994-4
  2. Mowbray, Miranda & Gollmann, Dieter. "Electing the Doge of Venice: Analysis of a 13th Century Protocol". Retrieved July 12, 2007.
  3. 3.0 3.1 3.2 3.3 3.4 Urn Model: Simple Definition, Examples and Applications — The basic urn model

अग्रिम पठन

  • Johnson, Norman L.; and Kotz, Samuel (1977); Urn Models and Their Application: An Approach to Modern Discrete Probability Theory, Wiley ISBN 0-471-44630-0
  • Mahmoud, Hosam M. (2008); Pólya Urn Models, Chapman & Hall/CRC. ISBN 1-4200-5983-1