अवकल समीकरणों की प्रणाली

From Vigyanwiki

गणित में, अवकल समीकरणों की प्रणाली अवकल समीकरणों का एक सीमित समुच्चय है। ऐसी प्रणाली या तो रैखिक अवकल समीकरण या गैर-रैखिक हो सकती है। इसके अतिरिक्त, ऐसी प्रणाली या तो सामान्य अवकल समीकरणों की प्रणाली या आंशिक अवकल समीकरणों की प्रणाली हो सकती है।

अवकल समीकरणों की रैखिक प्रणाली

समीकरणों की किसी भी प्रणाली की तरह, रैखिक अंतर समीकरणों की एक प्रणाली को अतिनिर्धारित कहा जाता है यदि अज्ञात की तुलना में अधिक समीकरण हों।

किसी अतिनिर्धारित प्रणाली का समाधान पाने के लिए उसे अनुकूलता शर्तों को पूरा करना होगा।[1] उदाहरण के लिए, सिस्टम पर विचार करें:

फिर सिस्टम के समाधान के लिए आवश्यक शर्तें हैं:

यह भी देखें: कॉची समस्या और एरेनपेरिस मौलिक सिद्धांत।

अवकल समीकरणों की अरैखिक प्रणाली

अंतर समीकरणों की गैर-रेखीय प्रणाली का संभवतया सबसे प्रसिद्ध उदाहरण नेवियर-स्टोक्स समीकरण है। रैखिक मामले के विपरीत, एक गैर-रैखिक प्रणाली के समाधान का अस्तित्व एक कठिन समस्या है (सीएफ. नेवियर-स्टोक्स अस्तित्व और स्मूथनेस।)

यह भी देखें: एच-सिद्धांत।

अवकल प्रणाली

एक अवकल प्रणाली, अवकल रूपों और सदिश क्षेत्रों जैसे ज्यामितीय विचारों का उपयोग करके आंशिक अंतर समीकरणों की एक प्रणाली का अध्ययन करने का एक साधन है।

उदाहरण के लिए, अवकल समीकरणों की एक अतिनिर्धारित प्रणाली की अनुकूलता स्थितियों को अवकल रूपों के संदर्भ में संक्षेप में बताया जा सकता है (यानी, एक रूप सटीक होने के लिए, इसे बंद करने की आवश्यकता है)। अधिक जानकारी के लिए अवकल प्रणालियों के लिए इंटीग्रेबिलिटी स्थितियाँ देखें।

यह भी देखें: :श्रेणी:अवकल प्रणालियाँ।

टिप्पणियाँ

  1. "Overdetermined system - Encyclopedia of Mathematics".


यह भी देखें

संदर्भ

  • L. Ehrenpreis, The Universality of the Radon Transform, Oxford Univ. Press, 2003.
  • Gromov, M. (1986), Partial differential relations, Springer, ISBN 3-540-12177-3
  • M. Kuranishi, "Lectures on involutive systems of partial differential equations" , Publ. Soc. Mat. São Paulo (1967)
  • Pierre Schapira, Microdifferential systems in the complex domain, Grundlehren der Math- ematischen Wissenschaften, vol. 269, Springer-Verlag, 1985.


अग्रिम पठन