चुंबकीयकरण

From Vigyanwiki
(Redirected from आकर्षण संस्कार)

विद्युत चुंबकत्व में, चुंबकीयकरण या चुंबकन एक ऐसा सदिश क्षेत्र है जो चुंबकीय पदार्थ में स्थायी या प्रेरित चुंबकीय द्विध्रुव क्षणों के घनत्व को व्यक्त करता है। इस क्षेत्र के भीतर की गतिविधि को दिशा द्वारा वर्णित किया गया है और यह अक्षीय या द्विसमाक्ष होता है। चुंबकत्व के लिए उत्तरदायी चुंबकीय क्षणों की उत्पत्ति या तो परमाणुओं में इलेक्ट्रॉनों की गति या इलेक्ट्रॉनों या नाभिक के घूर्णन (भौतिकी) से उत्पन्न सूक्ष्म विद्युत धाराएं हो सकती हैं। किसी पदार्थ की बाहरी चुंबकीय क्षेत्र की प्रतिक्रिया से शुद्ध चुंबकत्व का परिणाम होता है। अनुचुंबकीय पदार्थों में चुंबकीय क्षेत्र में एक दुर्बल प्रेरित चुंबकत्व होता है जो चुंबकीय क्षेत्र को अलग कर दिए जाने पर नष्ट हो जाता है। लोह चुंबकीय और अनुचुंबकीय पदार्थों में चुंबकीय क्षेत्र में जटिल चुंबकत्व होता है और बाहरी क्षेत्र की अनुपस्थिति में स्थायी चुंबक बनने के लिए चुंबकीयकरण किया जा सकता है। पदार्थ के भीतर चुंबकीयकरण आवश्यक रूप से समान नहीं होता है लेकिन विभिन्न बिंदुओं के बीच भिन्न हो सकता है। चुंबकीकरण यह भी वर्णन करता है कि कैसे एक पदार्थ प्रयुक्त चुंबकीय क्षेत्र के साथ-साथ जिस प्रकार से पदार्थ चुंबकीय क्षेत्र को परिवर्तित करता है उस पर प्रतिक्रिया करती है और उन पारस्परिक प्रभाव से उत्पन्न होने वाली ऊर्जा की गणना करने के लिए प्रयोग किया जा सकता है। इसकी तुलना विद्युत ध्रुवीकरण घनत्व से की जा सकती है जो स्थिर विद्युतिकी के विद्युत क्षेत्र में पदार्थ की संगत प्रतिक्रिया की माप है। भौतिक विज्ञानी और इंजीनियर सामान्यतः चुंबकत्व को प्रति इकाई आयतन के चुंबकीय क्षण की मात्रा के रूप में परिभाषित करते हैं।[1] इसको एक छद्म सदिश M द्वारा प्रदर्शित किया गया है।

परिभाषा

चुंबकत्व क्षेत्र या M क्षेत्र को निम्न समीकरण के अनुसार परिभाषित किया जा सकता है:

मैक्सवेल के समीकरणों में

मैक्सवेल के समीकरणों द्वारा चुंबकीय क्षेत्र (B, H), विद्युत क्षेत्र (E, D), आवेश घनत्व (ρ) और धारा घनत्व (J) का वर्णन किया गया है। चुंबकत्व की भूमिका नीचे वर्णित है।

बी, एच और एम के बीच संबंध

चुंबकीयकरण सहायक चुंबकीय क्षेत्र H को परिभाषित करता है:

(SI इकाई)
(गाऊसी इकाई)

जो विभिन्न गणनाओं के लिए सुविधाजनक है। निर्वात पारगम्यता μ0, परिभाषा के अनुसार, ×10−7 V·s/(A·m) एसआई इकाइयों में है। कई पदार्थों में M और H के बीच एक संबंध सम्मिलित है। प्रतिचुंबकीय और अनुचुम्बकीय में, संबंध सामान्यतः रैखिक होता है:

जहां χ को चुंबकीय संवेदनशीलता कहा जाता है और μ को पदार्थ की पारगम्यता (विद्युत चुंबकत्व) कहा जाता है। चुंबकीय क्षेत्र में अनुचुम्बकीय या प्रतिचुंबकीय की प्रति इकाई आयतन (अर्थात चुंबकीय ऊर्जा घनत्व) की चुंबकीय ऊर्जा है:

जिसका ऋणात्मक ढाल पैरामैग्नेट (या डायमैग्नेट) पर प्रति इकाई आयतन (यानी बल घनत्व) पर चुंबकीय बल है। प्रतिचुंबकीय में () और अनुचुम्बकीय मे (), सामान्यतः , और इसलिए लोह चुंबकीय में चुंबकीय शैथिल्य के कारण M और H के बीच समतुल्यता नहीं होती है।

चुंबकीय ध्रुवीकरण

चुंबकीयकरण के वैकल्पिक रूप से, कोई भी चुंबकीय ध्रुवीकरण को परिभाषित कर सकता है प्रायः I प्रतीक J का उपयोग धारा घनत्व के साथ भ्रमित न होने के लिए किया जाता है।[2]

(SI इकाई)

यह विद्युत ध्रुवीकरण के प्रत्यक्ष समतुल्यता द्वारा चुंबकीय ध्रुवीकरण इस प्रकार μ0 के एक कारक द्वारा चुंबकीयकरण से भिन्न होता है:

(SI इकाई)

जबकि चुंबकत्व को सामान्यतः एम्पीयर/मीटर में मापा जाता है और चुंबकीय ध्रुवीकरण को टेस्लास में मापा जाता है।

चुम्बकन धारा

जब चुंबकीयकरण (काले तीर) द्वारा प्रेरित सूक्ष्म धाराएं संतुलित नहीं होती हैं, तो माध्यम में बाध्य आयतन धाराएं (नीला तीर) और बाध्य सतह धाराएं (लाल तीर) दिखाई देती हैं।

चुंबकीयकरण M धारा घनत्व J में योगदान देता है जिसे चुंबकीयकरण धारा के रूप में जाना जाता है।

A. Herczynski (2013). "बाध्य प्रभार और धाराएं" (PDF). American Journal of Physics. 81 (3): 202–205. Bibcode:2013AmJPh..81..202H. doi:10.1119/1.4773441. </रेफरी>

और बाध्य सतह धारा के लिए:

ताकि मैक्सवेल के समीकरणों में प्रवेश करने वाले कुल वर्तमान घनत्व द्वारा दिया गया हो

जहां जेf मुक्त आवेशों का विद्युत धारा घनत्व है (जिसे मुक्त धारा भी कहा जाता है), दूसरा शब्द चुंबकत्व से योगदान है, और अंतिम शब्द विद्युत ध्रुवीकरण 'P' से संबंधित है।

मैग्नेटोस्टैटिक्स

मुक्त विद्युत धाराओं और समय-निर्भर प्रभावों की अनुपस्थिति में, चुंबकीय मात्रा का वर्णन करने वाले मैक्सवेल के समीकरण कम हो जाते हैं

इन समीकरणों को इलेक्ट्रोस्टैटिक समस्याओं के अनुरूप हल किया जा सकता है

इस अर्थ में −∇⋅M विद्युत आवेश घनत्व ρ के अनुरूप एक काल्पनिक चुंबकीय आवेश घनत्व की भूमिका निभाता है; (विचुंबकीयकरण क्षेत्र भी देखें)।

डायनेमिक्स

नैनोस्केल और नैनोसेकंड टाइमस्केल मैग्नेटाइजेशन पर विचार करते समय मैग्नेटाइजेशन का समय-निर्भर व्यवहार महत्वपूर्ण हो जाता है। केवल एक लागू क्षेत्र के साथ संरेखित करने के बजाय, एक सामग्री में अलग-अलग चुंबकीय क्षण लागू क्षेत्र के चारों ओर पूर्वगामी होने लगते हैं और विश्राम के माध्यम से संरेखण में आते हैं क्योंकि ऊर्जा जाली में स्थानांतरित हो जाती है।

उत्क्रमण

मैग्नेटाइजेशन रिवर्सल, जिसे स्विचिंग के रूप में भी जाना जाता है, उस प्रक्रिया को संदर्भित करता है जो मैग्नेटाइजेशन यूक्लिडियन वेक्टर के 180 ° (चाप) पुन: अभिविन्यास की ओर जाता है, इसकी प्रारंभिक दिशा के संबंध में, एक स्थिर अभिविन्यास से विपरीत दिशा में। तकनीकी रूप से, यह चुंबकत्व में सबसे महत्वपूर्ण प्रक्रियाओं में से एक है जो चुंबकीय डेटा स्टोरेज डिवाइस प्रक्रिया से जुड़ा हुआ है जैसे कि आधुनिक हार्ड डिस्क ड्राइव में उपयोग किया जाता है। [3] जैसा कि मे चुम्बकन धारा ज्ञात है कि धातु चुंबक के चुंबकीयकरण के कुछ ही संभावित तरीके हैं:

  1. एक प्रयुक्त चुंबकीय क्षेत्र[3]
  2. घूर्णन (भौतिकी) के साथ कणों के एक बीम के माध्यम से घूर्णन घूर्णन अंतःक्षेपण[3]
  3. वृत्तीय ध्रुवीकृत प्रकाश द्वारा चुंबकीयकरण उत्क्रमण[4] अर्थात, घटना विद्युत चुम्बकीय विकिरण जो वृत्तीय रूप से ध्रुवीकृत होती है।







विचुंबकन

विचुंबकत्व चुंबकत्व की कमी या निष्कासन है।[5] ऐसा करने का एक तरीका यह है कि वस्तु को उसके क्यूरी तापमान से ऊपर आवेशित किया जाए, जहां तापीय आवेश में पर्याप्त ऊर्जा होती है जो विनिमय अंतः क्रियाओं और लोह चुंबकीय स्रोत को दूर करने और उस क्रम को नष्ट करने के लिए पर्याप्त होती है। दूसरा तरीका यह है कि इसके माध्यम से प्रवाहित होने वाली प्रत्यावर्ती धारा वाले विद्युत तार से इसे बाहर निकाला जाए, जिससे चुंबकीयकरण का विरोध करने वाले क्षेत्रों को उत्पन्न किया जा सकता है।[6]

विचुंबकीकरण का एक अनुप्रयोग अवांछित चुंबकीय क्षेत्रों को समाप्त करना है। उदाहरण के लिए, चुंबकीय क्षेत्र इलेक्ट्रॉनिक उपकरणों जैसे कि सेल फोन या कंप्यूटर और मशीनिंग के साथ चुंबकीय क्षेत्र मे हस्तक्षेप कर सकते हैं।[6]

यह भी देखें

संदर्भ

  1. C.A. Gonano; R.E. Zich; M. Mussetta (2015). "ध्रुवीकरण पी और चुंबकीयकरण एम की परिभाषा मैक्सवेल के समीकरणों के साथ पूरी तरह से संगत है" (PDF). Progress in Electromagnetics Research B. 64: 83–101. doi:10.2528/PIERB15100606. </रेफरी> यह एक pseudovector एम द्वारा दर्शाया गया है।

    परिभाषा

    चुंबकत्व क्षेत्र या एम-फ़ील्ड को निम्न समीकरण के अनुसार परिभाषित किया जा सकता है:

    कहाँ प्राथमिक चुंबकीय क्षण है औरमात्रा तत्व है; दूसरे शब्दों में, 'एम'-क्षेत्र संबंधित क्षेत्र या कई गुना में चुंबकीय क्षणों का वितरण है। यह निम्नलिखित संबंध के माध्यम से बेहतर ढंग से चित्रित किया गया है:
    जहाँ m एक साधारण चुंबकीय क्षण है और ट्रिपल इंटीग्रल एक आयतन पर एकीकरण को दर्शाता है। यह एम-फ़ील्ड को पूरी तरह से ध्रुवीकरण घनत्व, या पी-फ़ील्ड के समान बनाता है, जिसका उपयोग समान क्षेत्र द्वारा उत्पन्न विद्युत द्विध्रुवीय पल पी को निर्धारित करने के लिए किया जाता है या इस तरह के ध्रुवीकरण के साथ कई गुना होता है:
    कहाँ प्राथमिक विद्युत द्विध्रुवीय क्षण है।

    प्रति इकाई आयतन के क्षणों के रूप में पी और एम की उन परिभाषाओं को व्यापक रूप से अपनाया जाता है, हालांकि कुछ मामलों में वे अस्पष्टता और विरोधाभास पैदा कर सकते हैं।

    एम-फ़ील्ड को एसआई इकाइयों में एम्पेयर प्रति मीटर (ए/एम) में मापा जाता है।<ref>"चुंबकीय गुणों के लिए इकाइयाँ" (PDF). Lake Shore Cryotronics, Inc. Archived from the original (PDF) on 2019-01-26. Retrieved 2015-06-10.

  2. Francis Briggs Silsbee (1962). विद्युत इकाइयों की प्रणाली. U.S. Department of Commerce, National Bureau of Standards.
  3. 3.0 3.1 3.2 Stohr, J.; Siegmann, H. C. (2006), Magnetism: From fundamentals to Nanoscale Dynamics, Springer-Verlag, Bibcode:2006mffn.book.....S
  4. Stanciu, C. D.; et al. (2007), Physical Review Letters, vol. 99, p. 217204, doi:10.1103/PhysRevLett.99.217204, hdl:2066/36522, PMID 18233247, S2CID 6787518
  5. "चुंबकीय घटक इंजीनियरिंग". चुंबकीय घटक इंजीनियरिंग. Archived from the original on December 17, 2010. Retrieved April 18, 2011.
  6. 6.0 6.1 "विचुंबकीकरण". Introduction to Magnetic Particle Inspection. NDT Resource Center. Retrieved April 18, 2011.