एफ़िन क्षेत्र

From Vigyanwiki

गणित में, और विशेष रूप से अवकल ज्यामिति में, एक एफ़िन क्षेत्र एक हाइपरसर्फेस होता है जिसके लिए एफ़िन सामान्य सभी एक ही बिंदु पर प्रतिच्छेद करते हैं।[1] एफ़िन क्षेत्र शब्द का उपयोग इसलिए किया जाता है क्योंकि वे यूक्लिडियन अवकल ज्यामिति में सामान्य क्षेत्रों के समान एफ़िन अंतर ज्यामिति में एक समान भूमिका निभाते हैं।

एफ़िन क्षेत्र को अनुचित कहा जाता है यदि एफ़िन के सभी मानक स्थिर हों।[1] उस स्थिति में, ऊपर उल्लिखित प्रतिच्छेदन बिंदु हाइपरप्लेन पर अनंत पर स्थित है।

एफ़िन क्षेत्र बहुत अधिक जांच का विषय रहे हैं, उनके अध्ययन के लिए समर्पित कई सैकड़ों शोध लेख हैं।[2]

उदाहरण

  • सभी चतुष्कोण चक्करदार गोले हैं; चतुष्कोण जो कि अनुपयुक्त सजातीय क्षेत्र भी हैं, परवलयज हैं।[3]
  • यदि ƒ समतल पर एक चिकना कार्य है और हेसियन मैट्रिक्स का निर्धारक ±1 है तो तीन-स्थान में ƒ का ग्राफ एक अनुचित संबंध क्षेत्र है।[4]

संदर्भ

  1. 1.0 1.1 Shikin, E. V. (2001) [1994], "Affine sphere", Encyclopedia of Mathematics, EMS Press
  2. "Google विद्वान खोज". Google Inc.
  3. Su, Buchin (1983). Affine अंतर ज्यामिति. Sci. Press and Gordon & Breach. ISBN 0-677-31060-9.
  4. Ishikawa, G.; Machida, Y. (2005). "निरंतर गाऊसी वक्रता के अनुचित संबंध क्षेत्रों और सतहों की विलक्षणता". arXiv:math/0502154. Bibcode:2005math......2154I. {{cite journal}}: Cite journal requires |journal= (help)