केंद्रीय सीमा प्रमेय

From Vigyanwiki

प्रायिकता सिद्धांत में, केंद्रीय सीमा प्रमेय (सीएलटी) स्थापित करता है, और कई स्थितियों में, समान रूप से वितरित स्वतंत्र प्रतिरूपो के लिए, मानकीकृत प्रतिरूप माध्य मानक सामान्य वितरण की ओर जाता है, भले ही मूल चर स्वयं सामान्य रूप से वितरित न हों।

प्रायिकता सिद्धांत में प्रमेय एक महत्वपूर्ण अवधारणा है क्योंकि इसका तात्पर्य है कि प्रायिकता और सांख्यिकी विधियां जो सामान्य वितरण के लिए कार्य करती हैं, और अन्य प्रकार के वितरणों से जुड़ी कई समस्याओं पर अनुप्रयोज्य हो सकती हैं।

प्रायिकता सिद्धांत के औपचारिक विकास के पर्यन्त इस प्रमेय में कई परिवर्तन देखे गए हैं। प्रमेय के पूर्व संस्करण 1811 से पूर्व के हैं, परन्तु अपने आधुनिक सामान्य रूप में, प्रायिकता सिद्धांत में इस मौलिक परिणाम को 1920 के अंत तक सटीक रूप से कहा गया था,[1] इस प्रकार लौकिक और आधुनिक प्रायिकता सिद्धांत के मध्य एक सेतु के रूप में कार्य करना है।

यदि समग्र अपेक्षित मान वाली समष्टि से लिए गए यादृच्छिक प्रतिरूप है, परिमित विचरण , यदि प्रथम का प्रतिरूप माध्य है, और फिर वितरण का सीमित रूप, , के साथ , एक मानक सामान्य वितरण है।[2]

उदाहरण के लिए, मान लीजिए कि एक प्रतिरूप प्राप्त किया जाता है जिसमें कई यादृच्छिक चर होते हैं, प्रत्येक अवलोकन यादृच्छिक रूप से इस तरह से उत्पन्न होता है जो अन्य अवलोकनों के मानों पर निर्भर नहीं होता है, और अवलोकन किए गए मानों के अंकगणितीय माध्य की गणना की जाती है। यदि यह प्रक्रिया कई बार की जाती है, तो केंद्रीय सीमा प्रमेय का तात्पर्य है कि औसत की प्रायिकता वितरण एक सामान्य वितरण के अंतअ होगा।

केंद्रीय सीमा प्रमेय के कई रूप हैं। अपने सामान्य रूप में, यादृच्छिक चर स्वतंत्र और समान रूप से वितरित (i.i.d.) होना चाहिए। भिन्नताओं में, सामान्य वितरण के माध्य का अभिसरण गैर-समान वितरणों के लिए या गैर-स्वतंत्र प्रेक्षणों के लिए भी होता है, यदि वे कुछ प्रतिबंधों का अनुपालन करते हैं।

इस प्रमेय का प्रारंभिक संस्करण, कि सामान्य वितरण को द्विपद वितरण के सन्निकटन के रूप में उपयोग किया जा सकता है, तथा द्विपद वितरण, डी मोइवर-लाप्लास प्रमेय है।

स्वतंत्र क्रम

जनसंख्या वितरण का जो भी रूप हो, प्रतिरूपकरण वितरण गॉसियन की ओर जाता है, और इसका परिक्षेपण केंद्रीय सीमा प्रमेय द्वारा दिया जाता है।[3]

लौकिक सीएलटी

माना यादृच्छिक प्रतिरूप का एक क्रम हो - अर्थात, आई.आई.डी. के एक क्रम द्वारा दिए गए अपेक्षित मान के वितरण से निर्मित किए गए यादृच्छिक चर और परिमित विचरण द्वारा दिया गया है, मान लीजिए हम प्रथम प्रतिरूप माध्य में रुचि रखते हैं।


बड़ी संख्या के नियम के अनुसार, प्रतिरूप औसत अनुमानित मान के लगभग निश्चित रूप से (और इसलिए प्रायिकता में भी अभिसरित) अपेक्षित मान जब पर अभिसरित होता है।

लौकिक केंद्रीय सीमा प्रमेय नियतात्मक संख्या इस अभिसरण के पर्यन्त आसपास प्रसंभाव्य अस्थिरता के आकार और वितरण रूप का वर्णन करता है। अधिक सटीक रूप से, यह बताता है कि जैसे बड़ा हो जाता है, प्रतिरूप औसत के मध्य अंतर का वितरण और इसकी सीमा , जब कारक (अर्थात ) द्वारा गुणा किया जाता है। माध्य 0 और विचरण के साथ सामान्य वितरण का अनुमान लगाता है। काफी बड़े n के लिए, का वितरण माध्य के साथ अव्यवस्थिततः सामान्य वितरण और विचरण के अंतअ हो जाता है।

प्रमेय की उपयोगिता यह है कि का वितरण विशिष्ट के वितरण के आकार की उपेक्षा किए बिना सामान्यता तक पहुँचता है। औपचारिक रूप से, प्रमेय को निम्नानुसार कहा जा सकता है:

Lindeberg–Lévy CLT — मान लीजिए i.i.d. का क्रम है, यादृच्छिक चर और के साथ, तब ऐसे अनंत तक पहुंचता है, यादृच्छिक चर वितरण में अभिसरण एक के लिए सामान्य है:[4]

यदि , वितरण में अभिसरण का अर्थ है कि संचयी वितरण कार्य करता है, वितरण के बिंदुवार को सीडीएफ में अभिसरण करें: प्रत्येक वास्तविक संख्या के लिए,

जहाँ मानक सामान्य सीडीएफ है, जिसका पर मूल्यांकन किया जाता है और अभिसरण एक समान है, इस अर्थ में कि
जहाँ समुच्चय के न्यूनतम ऊपरी सीमा (या सर्वोच्च) को दर्शाता है।[5]


लायपुनोव सीएलटी

प्रमेय का नाम रूसी गणितज्ञ अलेक्जेंडर लायपुनोव के नाम पर रखा गया है। केंद्रीय सीमा प्रमेय के इस संस्करण में यादृच्छिक चर स्वतंत्र होना चाहिए, परन्तु आवश्यक नहीं कि समान रूप से वितरित किया जाए। प्रमेय को भी यादृच्छिक चर की आवश्यकता होती है, कुछ क्रम के क्षण है और यह कि इन क्षणो के वृद्धि की दर नीचे दी गई लायपुनोव स्थिति द्वारा सीमित है।

Lyapunov CLT[6] — मान लीजिए कि स्वतंत्र यादृच्छिक चर का एक क्रम है, प्रत्येक परिमित अपेक्षित मान और विचरण के साथ परिभाषित

यदि कुछ के लिए , लायपुनोव स्थिति

संतुष्ट है, तब के योग वितरण में एक मानक सामान्य यादृच्छिक चर के रूप में परिवर्तित होता है, अनंत तक जाता है:

व्यवहार में सामान्यतः लायपुनोव की स्थिति की जांच करना सबसे सरल होता है।

यदि यादृच्छिक चर का एक क्रम लायपुनोव की स्थिति को संतुष्ट करता है, तो यह लिंडबर्ग की स्थिति को भी संतुष्ट करता है। हालांकि, विपरीत निहितार्थ पकड़ में नहीं आता है।

लिंडबर्ग सीएलटी

उसी समुच्चयन में और उपरोक्त के समान संकेतन के साथ, लायपुनोव की स्थिति को निम्नलिखित दुर्बल (1920 में जारल वाल्डेमर लिंडेबर्ग से) के साथ परिवर्तित किया जा सकता है।

मान लीजिए कि प्रत्येक के लिए

जहाँ सूचक कार्य है। फिर मानकीकृत योग का वितरण
मानक सामान्य वितरण की ओर अभिसरण करता है।

बहुआयामी सीएलटी

विशिष्ट फलनों का उपयोग करने वाले प्रमाणों को उन स्थितियों तक बढ़ाया जा सकता है जहां प्रत्येक विशिष्ट में एक यादृच्छिक सदिश है, अभिप्राय सदिश के साथ और सहप्रसरण आव्यूह (सदिश के घटकों के मध्य), और ये यादृच्छिक सदिश स्वतंत्र और समान रूप से वितरित हैं। बहुआयामी केंद्रीय सीमा प्रमेय में वर्णित है कि जब माप क्रमित किया जाता है, तो योग एक बहुभिन्नरूपी सामान्य वितरण में परिवर्तित हो जाते हैं।[7]

माना

k-सदिश है। माप क्रमित का अर्थ है कि यह एक यादृच्छिक सदिश है, न कि एक यादृच्छिक (अविभाजित) चर है। तब यादृच्छिक सदिशों का योग होगा;
और औसत है
और इसलिए
बहुभिन्नरूपी केंद्रीय सीमा प्रमेय कहता है कि
जहां सहप्रसरण आव्यूह के समान है